Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 January 2021 | Story Elsabe Brits | Photo SADC-GMI
Dr Eelco Lukas, a geohydrologist, is the Director of the Institute for Groundwater Studies at the University of the Free State (UFS).

Nearly two-thirds of South Africa depends solely or partially on groundwater for domestic needs, and in a water-stressed country this source is becoming increasingly important. But we need to use it wisely.

Dr Eelco Lukas, a geohydrologist, is the Director of the Institute for Groundwater Studies at the University of the Free State (UFS). He explains that all the natural water found in the earth’s subsurface is called groundwater. “When we look hard enough, we can find groundwater almost everywhere.  But that does not mean that we can start pumping groundwater at any location.  In many places, the amount of groundwater available (yield) is so little, or the water so deep that it is not financially viable to pump it.  Another problem might be the quality of the water.”

Numerous towns and communities depend solely on groundwater and many towns use a combined supply of surface and groundwater. When the town or settlement is far from any surface water and groundwater is available, boreholes are drilled. Depending on the size of the settlement, the boreholes are equipped with electrical or hand pumps.

Most of the big cities use surface water in their water pipes. Almost all big cities worldwide are located close to a supply of freshwater.  Cape Town has drilled many boreholes in the past two years to augment the city’s water supply.  However, problems can arise when a borehole is drilled for a community with a certain number of people, and soon there are more people than the borehole can supply for. It is not so much a case of the ‘borehole drying up’ but that the capacity has been exceeded.

Misconceptions about groundwater

With increasing drought and water restrictions being imposed, many people opted for their own borehole. When so many people draw water from the same source, the water table will drop. It can be compared to drinking a milkshake, but when five other people also drink with straws from the same milkshake, all will be left thirsty. 

Dr Lukas says because groundwater is something that cannot be seen with the naked eye, the general public has many misconceptions about groundwater. Some people think that you can drill a hole just anywhere and that you will find water, while others believe that water flows in underground rivers. It generally moves very slowly, only a few metres per year. And if it rains in a specific place, it does not mean that water will reach a particular borehole.

“Sustainable groundwater usage is the certainty that enough groundwater is available in years to come.  Sustainability is dependent on two external factors, namely demand and supply.  Unfortunately, both these factors are beyond the control of the geohydrologist.  When enough water is available for a community, the chances are that the community starts to grow, thereby enlarging the demand.  If the higher demand cannot be met, sustainability is no longer possible. When a change in rainfall pattern results in a decline of the precipitation, the groundwater recharge will become less, resulting in a lower supply of water.”


How does water move?

Groundwater moves through openings in the subsurface. These openings can be large (a millimetre to a few centimetres), but most of the time they are small, only a fraction of a millimetre. These are called pore spaces.  Water can only move through the pores if the pores are connected to other pores. The ease with which water can move through the rock is called hydraulic conductivity and is expressed in volume per area per time.  

Dr Lukas explains that different types of rock have different sizes of pore openings. The speed at which water can move through unconsolidated materials ranges from 1 000 m/d (gravel) to 10-8 m/d (clay). Consolidated materials range from 1 000 m/d (highly fractured rock) to 10-7 m/d (shale).  Sandstone, a rock that occurs in abundance in South Africa, has a typical hydraulic conductivity of 10-2 m/d, meaning that the speed at which the water flows is around 1 cm/d, which is less than 4 metres per year.  

In a way, you can compare groundwater flow to a pipe filled with marbles.  If you remove one marble at the one side, a marble may enter the pipe on the other side.  Although it may take the marble a long time to reach the other side of the pipe, the movement of the marbles is noticed almost immediately, says Dr Lukas.

Before groundwater is used, experts must make sure that it is suitable, Dr Lukas says. This is one of the areas that the Institute of Groundwater Studies at the UFS excels in. The institute also provides a complete service to industries through field investigations, the development of specialised field equipment, a well-equipped commercial and water research laboratory, and a number of computer models for the management of the aquifers, protecting them from pollution.

There are different standards for different purposes.  The best-known standard is the drinking 
water standard (SANS 241).  The water is tested for microbiology, as well as for the physical, aesthetic, operational and chemical determinants, and for the taste and colour.

There are several geophysical methods to locate groundwater.  “It must be stressed that the geophysical methods do not actually indicate places with water, but rather places where the geology and geological features support the presence of groundwater,” he says.

Different techniques are used to ‘look’ at different depths.   Water found close to the surface (upper 20 m) is often young water, meaning that it has been recharged not too long ago.  Because it is so close to the surface, it is vulnerable to contamination.   Deeper water is probably a bit older and because it is farther below the surface, it is more protected against surface contamination and the quality of this water is generally good.  Really deep groundwater (> 200 metres deep) will be even older and may have elevated salt content due to the long residence time of the water.

How much groundwater do we have?

Groundwater is a significant source of water, and in some parts of the country the only source of potable water.  According to the Department of Water Affairs and Sanitation, the most recent estimate of sustainable potential yield of groundwater resources at high assurance is 7 500 million m³/a, while current groundwater use is estimated at around 2 000 million m³/a. Allowing for an underestimation on groundwater use, about 3 500 million m³/a could be available for further development.  Unfortunately, if there is a shortage of water on one side of the country, it cannot be supplemented with water from the other side.
 
With a drought, the amount of water falling from the sky is below average, which means that the available water to recharge is also less. With less recharge water, the groundwater levels will decline.  To make things worse during a drought, groundwater users will pump more water to make up the deficit in rainfall, thereby accelerating the drop in water levels.

“Groundwater can be used to help humanity. The pore space in aquifers can be used to store water during a wet period, to be used later during a drought. This is called water banking, where water is injected into the aquifers (artificial recharge) during a period when there is enough water and pumped from the same aquifer during a period of water shortage,” says Dr Lukas. 

News Archive

Four modernised controlled environment cabinets inaugurated
2006-07-27

Photographed in a controlled environment cabinet were at the back from the left:  Mr Adriaan Hugo (head of the UFS Electronics and Mechanisation Division), Prof Herman van Schalkwyk (Dean: Faculty of Natural and Agricultural Sciences at the UFS) and Prof Koos Terblans (lecturer at the UFS Department of Physics).  In front is Mr Koos Uys (engineering consultant from Experto Designa who helped with the cooling systems of the cabinets).
Photo: Leonie Bolleurs

Different look for research in controlled circumstances at the UFS  

Research in controlled circumstances at the University of the Free State (UFS) turned a new page today with the inauguration of four modernised controlled environment cabinets of the Department of Soil, Crop and Climate Sciences.

“The controlled environment cabinets, which are situated next to the glass houses on the eastern side of the Agriculture Building on the Main Campus in Bloemfontein, were installed in the early 1980’s.  The cabinets, used for research purposes in controlled circumstances by the UFS for many years, became dysfunctional and needed to be repaired and put into use again,” said Prof Herman van Schalkwyk, Dean: Faculty of Natural and Agricultural Sciences at the UFS.

“The cabinets are used by the agronomics, horticulture and soil science divisions of the Department of Soil, Crop and Climate Sciences to control factors such as the temperature, the intensity and quality of light, synthesis and humidity.  This is done 24 hours a day, with hourly intervals,” said Prof Van Schalkwyk.

The cabinets are ideally suited to determine the joint and separate effects of these factors on the growth of plants.  The adaptability of plants to climate can also be investigated under controlled circumstances.  All of this leads to a better understanding of the growth and development process of plants, more specifically that of agricultural crops. 

“The effect of these environmental factors on the effectiveness of insect killers such as fungus killers, insecticide and weed killers can also be investigated and can help to explain the damage that is sometimes experienced, or even prevent the damage if the research is timeously,” said Prof Van Schalkwyk.

A new cabinet can cost between R2-3 million, depending on the degree of sophistication.  “Although controlled environment cabinets have been used for agricultural research for a long time, it has become costly to maintain them     and even more impossible to purchase new ones,” said Prof Van Schalkwyk.

According to Prof Van Schalkwyk the cabinets were re-built by die UFS Electronics and Mechanisation Division.  Some of the mechanisms were also replaced and computerised.   

“The re-building and mechanisation of the cabinets were funded by the faculty and because the work was done by our own staff, an amount of about R1 million was saved.  The maintenance costs will now be lower as the cabinets are specifically tailor made for our research needs,” said Prof Van Schalkwyk.

Where all monitoring was done manually in the past, the cabinets can now be controlled with a computer.  This programme was designed by Prof Koos Terblans from the UFS Department of Physics. 

According to Prof Van Schalkwyk the modernisation of the cabinets is part of the faculty’s larger strategy to get its instruments and apparatus up to world standards.  “With this project we have proved that we can find a solution for a problem ourselves and that there are ways to get old apparatus functional again,” said Prof Van Schalkwyk.

Media release
Issued by: Lacea Loader
Media Representative
Tel:   (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
26 July 2006

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept