Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 January 2021 | Story Dr Nitha Ramnath | Photo Sonia Small
Prof Phillippe Burger.

The COVID-19 pandemic has disrupted the entire world, claiming more than two million lives and sparing no region. The world is confronted with urgent unsolved challenges, with the poor and vulnerable populations, low-skilled workers, and refugees most affected. 

These challenges will be addressed by the Lancet COVID-19 Commission and its various task forces, one of which is the Fiscal Policy and Financial Markets task force. Prof Philippe Burger, Professor of Economics and Pro-Vice-Chancellor: Poverty, Inequality and Economic Development at the University of the Free State, serves as a member of the commission’s Fiscal Policy and Financial Markets task force. The eleven members of the task force include two Nobel prize laureates in economics, as well as academics and public-policy specialists from across the world, under the co-chairpersonship of Dr Vitor Gaspar (Director of the Department of Fiscal Affairs at the IMF) and Prof Felipe Larraín (Professor of Economics, Pontifical Catholic University of Chile and former Minister of Finance of Chile).

The commission is an interdisciplinary initiative across the health sciences, business, finance, and public policy, and was created to help speed up global, equitable, and lasting solutions to the pandemic. The work of the commission is divided into 12 task forces, each composed of members from diverse disciplinary interests, geographies, and identities. These task forces provide support in areas ranging from vaccine development to humanitarian relief strategies, to safe workplaces, to global economic recovery. 

Key aims of the commission is to speed up awareness and the worldwide adoption of strategies to suppress transmission, as well as to ensure that COVID-19 vaccines and key technologies are equitably accessible across the world.

The Fiscal Policy and Financial Markets task force will consider fiscal and financial issues related to the pandemic affecting advanced, emerging market, and developing economies. Based on evidence and best practices, the task force will provide recommendations on managing the effects of the pandemic and will also manage the transition to a resilient, smart, inclusive, and green growth path. Issues related to fiscal sustainability as well as debt relief in poor countries are on the task team’s agenda.

Many multilateral institutions such as the WHO, the IMF, the World Bank, the Food and Agricultural Organisation of the UN, the UN World Food Programme, the UN Educational, Scientific and Cultural Organisation, the Organisation for Economic Co-operation and Development, and others face profound challenges in undertaking their crucial missions to coordinate the global response to the pandemic. The Lancet COVID-19 Commission also aims to make recommendations to strengthen the efficacy of these critical institutions. Moreover, the commission reaches out to regional groupings, including the African Union, the Association of Southeast Asian Nations (ASEAN), the Southern Common Market (MERCOSUR), and others, to support the efforts of these bodies in fighting the pandemic. 

The Lancet COVID-19 Commission and its task teams include leaders in health science and healthcare delivery, business, politics, and finance from across the world. They volunteer to serve in their individual capacities – not as formal representatives of their home institutions – and will work together towards a shared and comprehensive outlook on how to stop the pandemic and how best to promote an equitable and sustainable recovery. 

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept