Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 January 2021 | Story Dr Nitha Ramnath | Photo Sonia Small
Prof Phillippe Burger.

The COVID-19 pandemic has disrupted the entire world, claiming more than two million lives and sparing no region. The world is confronted with urgent unsolved challenges, with the poor and vulnerable populations, low-skilled workers, and refugees most affected. 

These challenges will be addressed by the Lancet COVID-19 Commission and its various task forces, one of which is the Fiscal Policy and Financial Markets task force. Prof Philippe Burger, Professor of Economics and Pro-Vice-Chancellor: Poverty, Inequality and Economic Development at the University of the Free State, serves as a member of the commission’s Fiscal Policy and Financial Markets task force. The eleven members of the task force include two Nobel prize laureates in economics, as well as academics and public-policy specialists from across the world, under the co-chairpersonship of Dr Vitor Gaspar (Director of the Department of Fiscal Affairs at the IMF) and Prof Felipe Larraín (Professor of Economics, Pontifical Catholic University of Chile and former Minister of Finance of Chile).

The commission is an interdisciplinary initiative across the health sciences, business, finance, and public policy, and was created to help speed up global, equitable, and lasting solutions to the pandemic. The work of the commission is divided into 12 task forces, each composed of members from diverse disciplinary interests, geographies, and identities. These task forces provide support in areas ranging from vaccine development to humanitarian relief strategies, to safe workplaces, to global economic recovery. 

Key aims of the commission is to speed up awareness and the worldwide adoption of strategies to suppress transmission, as well as to ensure that COVID-19 vaccines and key technologies are equitably accessible across the world.

The Fiscal Policy and Financial Markets task force will consider fiscal and financial issues related to the pandemic affecting advanced, emerging market, and developing economies. Based on evidence and best practices, the task force will provide recommendations on managing the effects of the pandemic and will also manage the transition to a resilient, smart, inclusive, and green growth path. Issues related to fiscal sustainability as well as debt relief in poor countries are on the task team’s agenda.

Many multilateral institutions such as the WHO, the IMF, the World Bank, the Food and Agricultural Organisation of the UN, the UN World Food Programme, the UN Educational, Scientific and Cultural Organisation, the Organisation for Economic Co-operation and Development, and others face profound challenges in undertaking their crucial missions to coordinate the global response to the pandemic. The Lancet COVID-19 Commission also aims to make recommendations to strengthen the efficacy of these critical institutions. Moreover, the commission reaches out to regional groupings, including the African Union, the Association of Southeast Asian Nations (ASEAN), the Southern Common Market (MERCOSUR), and others, to support the efforts of these bodies in fighting the pandemic. 

The Lancet COVID-19 Commission and its task teams include leaders in health science and healthcare delivery, business, politics, and finance from across the world. They volunteer to serve in their individual capacities – not as formal representatives of their home institutions – and will work together towards a shared and comprehensive outlook on how to stop the pandemic and how best to promote an equitable and sustainable recovery. 

News Archive

What do diamonds, chocolates, bugs and almost 30 Nobel Prizes have in common? Crystallography
2014-10-15

 

Some of the keynote speakers and chairpersons at the third world summit in the International Year of Crystallography (in Africa) were, from the left, front: Profs Abdelmalek Thalal (Morocco), Prosper Kanyankogote (University of Kinshasa, Democratic Republic of the Congo); Habib Bougzala (Tunisia), Santiago Garcia-Granda (IUCr, University Oviedo, Spain), Michele Zema (IYCr 2014, Italy/UK) and Dr Jean-Paul Ngome-Abiaga (UNESCO, Paris, France); back: Dr Thomas Auf der Heyde (Acting Director-general, South African Department of Science and Technology); Dr Petrie Steynberg (SASOL) and Prof André Roodt (UFS, host).

Photo: Marija Zbacnik
The third world summit in the International Year of Crystallography (in Africa) was hosted by Prof André Roodt, Head of the Department of Chemistry and President of the European Crystallographic Association,  at the University of the Free State in Bloemfontein.

A declaration with and appeal to support crystallography and science across Africa, was signed.

When one mentions 'Crystallography', or more simply 'crystals', what comes to mind? Diamonds? Perhaps jewellery in general? When thinking of crystals and Crystallography, you will need to think much bigger. And further – even to Mars and back.

Crystallography refers to the branch of science that is concerned with structure and properties of crystals. The obvious examples would include cut diamonds, gemstones such as amethysts, and ‘simple’ crystals such as selenite and quartz.

But have you thought about the irritating brown scales at the bottom of your kettle? The sand in your shoes? The salt over your lamb chops or the sugar in your coffee? All crystals. From egg shells to glucose, from bugs and insecticides to additives in food – even the compounds in chocolate – all fall under the close scrutiny of Crystallography.

The breakthroughs this field of science has produced have led to almost 30 Nobel Prizes over the years.

Determining the structure of DNA by crystallography was arguably one of the most significant scientific events of the 20th century. Different diseases have been cured or slowed by medicines obtained based on crystallographic studies. These include certain cancers, HIV/Aids, Tuberculosis and Malaria. Biological Crystallography enables the development of anti-viral drugs and vaccines.

This field of science influences our daily lives in virtually immeasurable ways. Here are but a few areas of study and development Crystallography contributes to:

•    LCD displays;
•    cellular smartphones;
•    insects and insecticides;
•    additives and products in foods;
•    improved effectiveness and security of credit cards;
•    new materials to preserve energy;
•    better gasoline with less by-products;
•    identify colour pigments used in paintings from the old masters, indicating if it’s an original or an imitation; and
•    beauty products such as nail polish, sun-block, mascara and eye shadow.

Crystallography is also currently used by the Curiosity Rover to analyse the substances and minerals on Mars.

Crystals and Crystallography form an integrated part of our daily lives – from bones and teeth to medicines and viruses, from chocolates to the blades in airplane turbines. Even down to the humble snowflake.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept