Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 January 2021 | Story Nonsindiso Qwabe | Photo Anja Aucamp
Dr Sekanse Ntsala

Lecturer in the School of Social Sciences and Language Education at the University of Free State, Dr Sekanse Ntsala, collaborated with colleagues from eight universities across South Africa to produce instructional reading strategies for Sesotho and isiZulu students in the Faculty of Education.

The project will see Dr Ntsala partner in the production of learning material in Sesotho and IsiZulu for Foundation and Intermediate phase lecturers, academics, and students. The project is centred in the Centre for African Language Teaching at the University of Johannesburg. 

Designing African language material is a progressive move 

He said there was a gap in the learning material currently being produced, as it was all produced in English, even for African languages. 

"The dilemma is that thus far, all the material that we use for teaching has been written in English. This means that lecturers have to rely on material written in English, and in some instances, they have to translate into the relevant African language. The challenge with translation is that the final product does not always come out the same. You find that even when lecturers have to compile study guides, they still have to rely on the same material. It's a challenge that affects even students themselves, as discussions and assessments have to be done in the African language in question."

He said rather than to translate the content that has been written in English, the collaboration will result in newly created material for Sesotho and IsiZulu.

The two languages were selected as pilot languages; Dr Ntsala said the aim of the project is to expand the creation of material to other languages in order to eliminate English as the main focus in teaching.

"The main rationale is that it's only fair that we have material that will be relevant to a particular language. The manner in which it is happening now is sort of degrading to other languages," he said.

Dr Ntsala said the material would be completed by the end of 2020 and would then go through the process of getting approval from the deaneries of the approved universities, as well as from the Department of Education.

"We are trying to ensure that every language gets recognition in classrooms. Having material that is language-specific is a step in the right direction to ensure that each language is given the respect it deserves."

News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept