Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 January 2021 | Story Nonsindiso Qwabe | Photo Anja Aucamp
Dr Sekanse Ntsala

Lecturer in the School of Social Sciences and Language Education at the University of Free State, Dr Sekanse Ntsala, collaborated with colleagues from eight universities across South Africa to produce instructional reading strategies for Sesotho and isiZulu students in the Faculty of Education.

The project will see Dr Ntsala partner in the production of learning material in Sesotho and IsiZulu for Foundation and Intermediate phase lecturers, academics, and students. The project is centred in the Centre for African Language Teaching at the University of Johannesburg. 

Designing African language material is a progressive move 

He said there was a gap in the learning material currently being produced, as it was all produced in English, even for African languages. 

"The dilemma is that thus far, all the material that we use for teaching has been written in English. This means that lecturers have to rely on material written in English, and in some instances, they have to translate into the relevant African language. The challenge with translation is that the final product does not always come out the same. You find that even when lecturers have to compile study guides, they still have to rely on the same material. It's a challenge that affects even students themselves, as discussions and assessments have to be done in the African language in question."

He said rather than to translate the content that has been written in English, the collaboration will result in newly created material for Sesotho and IsiZulu.

The two languages were selected as pilot languages; Dr Ntsala said the aim of the project is to expand the creation of material to other languages in order to eliminate English as the main focus in teaching.

"The main rationale is that it's only fair that we have material that will be relevant to a particular language. The manner in which it is happening now is sort of degrading to other languages," he said.

Dr Ntsala said the material would be completed by the end of 2020 and would then go through the process of getting approval from the deaneries of the approved universities, as well as from the Department of Education.

"We are trying to ensure that every language gets recognition in classrooms. Having material that is language-specific is a step in the right direction to ensure that each language is given the respect it deserves."

News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept