Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 January 2021 | Story Leonie Bolleurs | Photo Supplied
Dr Anamika Megwalu, an assessment and engineering librarian at San Jose State University in California in the United States (US), addressed a group of staff from the UFS Department of Library and Information Services.

Dr Anamika Megwalu, an assessment and engineering librarian at San Jose State University in California in the United States (US), pointed out that building a lasting and sustainable relationship with departments and upholding quality in the library environment is key. 

She addressed a group of colleagues from our Department of Library and Information Services (LIS) on 25 November 2020.

Tight budgets call for proper assessment

Her presentation, titled Library Collection Development, was aimed at sharing her experience of working in the collection development and liaison sections within the LIS ecosystem. 

“This librarian-cum-computer science lecturer has the benefit of both worlds, having worked in private and public academic libraries such as Stafford University and City University of New York respectively,” says Monde Madiba, Deputy Director: Collection Development and Management of LIS at the University of the Free State.

San Jose, the oldest public university in the western US, is located in the heart of Silicon Valley, serving more than 33 000 students enrolled in 10 colleges and 67 departments.

According to Dr Megwalu, the tight budgets that public academic libraries such as San Jose receive, call for proper assessment of library collections in order to deal with the constraints. She emphasised the need to “uphold quality within the constraints”.

Moving from collecting information to creating information

Some of the ideas that Dr Megwalu shared for conducting assessment and collection development, includes the following:
• Change the library’s image from being a collector of information to being the creator of information.
• Consider the size of the different departments: some may need little or no attention due to size, while others may need close attention due to intensive research by lecturers within the department.
• Identify gaps and focus your attention on filling them with the relevant collection.
• Make sure that you are aware of the accreditation period of different programmes, since the role that academic libraries play in collection development is recognised by such agencies.
• Build a lasting and sustainable relationship with departments. This includes knowing the lecturers’ research interests, assisting the newly established departments, attending free webinars, and participating in student activities.
• Ensure equal distribution of the budget and ensure that everyone has equal access to it.
• Create a timetable where everyone knows when to submit requests for prescribed books. Make it clear that it takes approximately three weeks on average for ordered books to be delivered.
• Develop department-specific collection development policies.
• Be ready to move with the times, e.g. replace DVDs in favour of video-streaming services.
• Shift towards a 100% electronic reference collection.
• Consider having an electronic version for popular but currently in-print collections.
• Develop an indigenous collection based on the contributions of communities around the university.
• Create a portal for open educational resources (OERs) from participating institutions across the globe.

“Dr Megwalu’s presentation was not only informative but a testimony that collection development and assessment are dynamic and driven by passion and love,” says Madiba.

News Archive

Research by experts published in Nature
2011-06-02

 
The members of the research group are, from the left, front: Christelle van Rooyen, Mariana Erasmus, Prof. Esta van Heerden; back: Armand Bester and Prof. Derek Litthauer.
Photo: Gerhard Louw

A  research article on the work by a team of experts at our university, under the leadership of Prof. Esta van Heerden, and counterparts in Belgium and the USA has been published in the distinguished academic journal Nature today (Thursday, 2 June 2011).

The article – Nematoda from the terrestrial deep subsurface of South Africa – sheds more light on life in the form of a small worm living under extreme conditions in deep hot mines. It was discovered 1,3 km under the surface of the earth in the Beatrix Goldmine close to Welkom and is the first multi-cellular organism that was found so far beneath the surface of the earth. The worm (nematode) was found in between a rock face that is between 3 000 and 12 000 years old.

The research can shed some new light on the possibility of life on other planets, previously considered impossible under extreme conditions. It also expands the possibilities into new areas where new organisms may be found.

These small invertebrates live in terrestrial soil subjected to stress almost for 24 hours They live through sunshine, rain, scorching temperatures and freezing conditions. Through time they developed a means to cope with harsh conditions. Terrestrial nematodes (roundworms, not to be confused or related to earthworms) are among those very tough small invertebrates that deal with those conditions everywhere. After insects they are the most dominant multi-cellular (metazoan) species on the planet having a general size of 0,5 to 1 mm and are among the oldest metazoans on the planet, Nature says in a statement on the article.

They inhabit nearly every imaginable habitat form the deep seas to the acid in pitcher . Some nematodes simply eat bacteria and these are the ones we study here. Terrestrial nematodes have developed a survival stage that can take them through hard times (absence of food, extreme temperatures, too little oxygen, crowding, and more).

At the head of the research was Prof. Gaetan Borgonie of the Ghent University in Belgium and a world leader in the discipline of nematode research. He was brought into contact with the South African research leader, Prof. Esta van Heerden, who set up a cooperation agreement with the University of Ghent and Prof. Borgonie. Prof. Van Heerden manages the Extreme Biochemistry group at the UFS and the research was funded by several research grants.

The search for worms began in earnest in 2007, but it was soon clear that the sampling strategy was insufficient. A massive sampling campaign in 2008-2009 in several mines led to the discovery of several nematodes and the new nematode species Halicephalobus mephisto. It is named after the legend of Faust where the devil, also known as the lord of the underworld is called Mephistopheles.

Nature says special filters had to be designed and installed on various boreholes. Unfortunately, there is no easy way of finding a magic formula and designs had to be adapted by trial and error; improving existing designs all the time. The work of the UFS Mechanical Workshop, which manufactured, adapted and helped design it, was crucial in this respect. Filters were left on the holes for varying periods, sometimes for a few hours and sometimes for months. Prof. Derek Litthauer from the UFS played a big role in sampling, filter designs and coming up with ideas for names for the new nematode with Prof. Borgonie.

Research showed that the nematodes can live in the deep for up to 12 000 years. Three students – Armand Bester, Mariana Erasmus and Christelle van Rooyen from the UFS – did the work on this.

The importance of multi-cellular animals living in the ultra-deep subsurface is twofold: The nematodes graze on the existing bacterial population and influence their turnover. Secondly, if more complex multi-cellular organisms can survive in the deep subsurface on earth, this may be good news when looking for life on other planets where the surface is considered too inhospitable (e.g. Mars). Complex life forms can be found in ecosystems previously thought to be uninhabitable. Nature says this expands the possibilities into new areas where new organisms may be discovered.

Future research will focus on selective boreholes to look for more metazoans, so that a better idea of the complexity of the ecosystems there can be obtained. It will also look for metazoans in the deep subsurface on other continents to determine similarities and differences.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept