Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 January 2021 | Story Leonie Bolleurs | Photo Supplied
Dr Anamika Megwalu, an assessment and engineering librarian at San Jose State University in California in the United States (US), addressed a group of staff from the UFS Department of Library and Information Services.

Dr Anamika Megwalu, an assessment and engineering librarian at San Jose State University in California in the United States (US), pointed out that building a lasting and sustainable relationship with departments and upholding quality in the library environment is key. 

She addressed a group of colleagues from our Department of Library and Information Services (LIS) on 25 November 2020.

Tight budgets call for proper assessment

Her presentation, titled Library Collection Development, was aimed at sharing her experience of working in the collection development and liaison sections within the LIS ecosystem. 

“This librarian-cum-computer science lecturer has the benefit of both worlds, having worked in private and public academic libraries such as Stafford University and City University of New York respectively,” says Monde Madiba, Deputy Director: Collection Development and Management of LIS at the University of the Free State.

San Jose, the oldest public university in the western US, is located in the heart of Silicon Valley, serving more than 33 000 students enrolled in 10 colleges and 67 departments.

According to Dr Megwalu, the tight budgets that public academic libraries such as San Jose receive, call for proper assessment of library collections in order to deal with the constraints. She emphasised the need to “uphold quality within the constraints”.

Moving from collecting information to creating information

Some of the ideas that Dr Megwalu shared for conducting assessment and collection development, includes the following:
• Change the library’s image from being a collector of information to being the creator of information.
• Consider the size of the different departments: some may need little or no attention due to size, while others may need close attention due to intensive research by lecturers within the department.
• Identify gaps and focus your attention on filling them with the relevant collection.
• Make sure that you are aware of the accreditation period of different programmes, since the role that academic libraries play in collection development is recognised by such agencies.
• Build a lasting and sustainable relationship with departments. This includes knowing the lecturers’ research interests, assisting the newly established departments, attending free webinars, and participating in student activities.
• Ensure equal distribution of the budget and ensure that everyone has equal access to it.
• Create a timetable where everyone knows when to submit requests for prescribed books. Make it clear that it takes approximately three weeks on average for ordered books to be delivered.
• Develop department-specific collection development policies.
• Be ready to move with the times, e.g. replace DVDs in favour of video-streaming services.
• Shift towards a 100% electronic reference collection.
• Consider having an electronic version for popular but currently in-print collections.
• Develop an indigenous collection based on the contributions of communities around the university.
• Create a portal for open educational resources (OERs) from participating institutions across the globe.

“Dr Megwalu’s presentation was not only informative but a testimony that collection development and assessment are dynamic and driven by passion and love,” says Madiba.

News Archive

Champagne and cancer have more in common than you might think
2013-05-08

 

Photo: Supplied
08 May 2013

No, a glass of champagne will not cure cancer....

…But they have more in common than you might think.

Researchers from the Departments of Microbial Biochemical and Food Biotechnology, Physics and the Centre for Microscopy at the University of the Free State in South Africa were recently exploring the properties of yeast cells in wine and food to find out more of how yeast was able to manufacture the gas that caused bread to rise, champagne to fizz and traditional beer to foam. And the discovery they made is a breakthrough that may have enormous implications for the treatment of diseases in humans.

The team discovered that they could slice open cells with argon gas particles, and look inside. They were surprised to find a maze of tiny passages like gas chambers that allowed each cell to ‘breathe.’ It is this tiny set of ‘lungs’ that puts the bubbles in your bubbly and the bounce in your bread.

But it was the technique that the researchers used to open up the cells that caught the attention of the scientists at the Mayo Clinic (Tumor Angiogenesis and Vascular Biology Research Centre) in the US.

Using this technology, they ultimately aim to peer inside cells taken from a cancer patient to see how treatment was progressing. In this way they would be able to assist the Mayo team to target treatments more effectively, reduce dosages in order to make treatment gentler on the patient, and have an accurate view of how the cancer was being eliminated.

“Yes, we are working with the Mayo Clinic,” said Profes Lodewyk Kock from the Microbial, Biochemical and Food Biotechnology Department at the UFS.

“This technique we developed has enormous potential for cell research, whether it is for cancer treatment or any other investigation into the working of cells. Through nanotechnology, and our own invention called Auger-architectomics, we are able to see where no-one has been able to see before.”

The team of Prof Kock including Dr Chantel Swart, Kumisho Dithebe, Prof Hendrik Swart (Physics, UFS) and Prof Pieter van Wyk (Centre for Microscopy, UFS) unlocked the ‘missing link’ that explains the existence of bubbles inside yeasts, and incidentally have created a possible technique for tracking drug and chemotherapy treatment in human cells.

Their work has been published recently in FEMS Yeast Research, the leading international journal on yeast research. In addition, their discovery has been selected for display on the cover page of all 2013 issues of this journal.

One can most certainly raise a glass of champagne to celebrate that!

There are links for video lectures on the technique used and findings on the Internet at:

1. http://vimeo.com/63643628 (Comic version for school kids)

2. http://vimeo.com/61521401 (Detailed version for fellow scientists)

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept