Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 January 2021 | Story Leonie Bolleurs | Photo Supplied
Dr Anamika Megwalu, an assessment and engineering librarian at San Jose State University in California in the United States (US), addressed a group of staff from the UFS Department of Library and Information Services.

Dr Anamika Megwalu, an assessment and engineering librarian at San Jose State University in California in the United States (US), pointed out that building a lasting and sustainable relationship with departments and upholding quality in the library environment is key. 

She addressed a group of colleagues from our Department of Library and Information Services (LIS) on 25 November 2020.

Tight budgets call for proper assessment

Her presentation, titled Library Collection Development, was aimed at sharing her experience of working in the collection development and liaison sections within the LIS ecosystem. 

“This librarian-cum-computer science lecturer has the benefit of both worlds, having worked in private and public academic libraries such as Stafford University and City University of New York respectively,” says Monde Madiba, Deputy Director: Collection Development and Management of LIS at the University of the Free State.

San Jose, the oldest public university in the western US, is located in the heart of Silicon Valley, serving more than 33 000 students enrolled in 10 colleges and 67 departments.

According to Dr Megwalu, the tight budgets that public academic libraries such as San Jose receive, call for proper assessment of library collections in order to deal with the constraints. She emphasised the need to “uphold quality within the constraints”.

Moving from collecting information to creating information

Some of the ideas that Dr Megwalu shared for conducting assessment and collection development, includes the following:
• Change the library’s image from being a collector of information to being the creator of information.
• Consider the size of the different departments: some may need little or no attention due to size, while others may need close attention due to intensive research by lecturers within the department.
• Identify gaps and focus your attention on filling them with the relevant collection.
• Make sure that you are aware of the accreditation period of different programmes, since the role that academic libraries play in collection development is recognised by such agencies.
• Build a lasting and sustainable relationship with departments. This includes knowing the lecturers’ research interests, assisting the newly established departments, attending free webinars, and participating in student activities.
• Ensure equal distribution of the budget and ensure that everyone has equal access to it.
• Create a timetable where everyone knows when to submit requests for prescribed books. Make it clear that it takes approximately three weeks on average for ordered books to be delivered.
• Develop department-specific collection development policies.
• Be ready to move with the times, e.g. replace DVDs in favour of video-streaming services.
• Shift towards a 100% electronic reference collection.
• Consider having an electronic version for popular but currently in-print collections.
• Develop an indigenous collection based on the contributions of communities around the university.
• Create a portal for open educational resources (OERs) from participating institutions across the globe.

“Dr Megwalu’s presentation was not only informative but a testimony that collection development and assessment are dynamic and driven by passion and love,” says Madiba.

News Archive

UFS to host one of three world summits on crystallography
2014-04-15

 
Prof André Roodt from the Department of Chemistry at the University of the Free State (UFS), co-unveiled a special plaque in Poznan, Poland, as president of the European Crystallographic Association, with prof Gautam Desiraju, president of the IUCr (front right) and others to commemorate the Nobel prize winner Max von Laue. (Photo's: Milosz Ruszkowski, Grzegorz Dutkiewicz)

Prof André Roodt from the Department of Chemistry at the University of the Free State (UFS), co-unveiled a special plaque in Poznan, Poland, as president of the European Crystallographic Association, to commemorate the Nobel prize winner Max von Laue at a special Laue Symposium organised by prof Mariusz Jaskolski from the A. Mickiewicz University in Poznan.

Max von Laue, who spent his early childhood in Poznan, was the first scientist to diffract X-rays with a crystal.

2014 has been declared by the United Nations as the International Year of Crystallography, and it was recently officially opened at the UNESCO headquarters in Paris, France, by the Secretary-General of the UN, Ban Ki-moon. The International Year of Crystallography celebrates the centennial of the work of Max von Laue and the father and son, William Henry and William Laurence Bragg.

As part of the celebrations, Prof Roodt, president of the European Crystallographic Association, one of the three regional affiliates (Americas, Europe and Africa; Asia and Australasia) of the International Union of Crystallography (IUCr), was invited by the president of the IUCr, Prof Gautam Desiraju, to host one of the three world summits, wherein crystallography is to showcase its achievements and strategise for the future.

The summit and conference will take place on the Bloemfontein Campus of the UFS from 12 to 17 October 2014 and is titled: 'Crystallography as vehicle to promote science in Africa and beyond.' It is an ambitious meeting wherein it is anticipated to bring the French-, English- and Arab-speaking nations of Africa together to strategise how science can be expanded, and to offer possibilities for this as nestled in crystallography. Young and established scientists, and politicians associated with science and science management, are the target audience to be brought together in Bloemfontein.

Dr Thomas Auf der Heyde, acting Director General of the South African Department of Science and Technology (DST), has committed some R500 000 for this effort, while the International Union of Crystallography provided R170 000.

“Crystals and crystallography form an integrated part of our daily lives, form bones and teeth, to medicines and viruses, new catalysts, jewellery, colour pigments, chocolates, electronics, batteries, metal blades in airplane turbines, panels for solar energy and many more. In spite of this, unfortunately, not many people know much about X-ray crystallography, although it is probably one of the greatest innovations of the twentieth century. Determining the structure of the DNA was one of the most significant scientific events of the 20th century. It has helped understand how genetic messages are being passed on between cells inside our body – everything from the way instructions are sent to proteins to fight infections, to how life is reproduced.

“At the UFS, crystallography finds application in Chemistry, Physics, Biology, Mathematics, Geology, Engineering and the Medical fields. Crystallography is used by the Curiosity Rover, analysing the substances and minerals on Mars!

“The UFS’s Departments of Chemistry and Physics, in particular, have advanced instruments and important research thrusts wherein X-ray crystallography has formed a central part for more than 40 years.

“Crystallography has produced some 28 Nobel prize winners over the past 100 years and continues to provide the means for fundamental and applied research,” said Prof Roodt.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept