Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 January 2021 | Story Leonie Bolleurs | Photo Supplied
Dr Anamika Megwalu, an assessment and engineering librarian at San Jose State University in California in the United States (US), addressed a group of staff from the UFS Department of Library and Information Services.

Dr Anamika Megwalu, an assessment and engineering librarian at San Jose State University in California in the United States (US), pointed out that building a lasting and sustainable relationship with departments and upholding quality in the library environment is key. 

She addressed a group of colleagues from our Department of Library and Information Services (LIS) on 25 November 2020.

Tight budgets call for proper assessment

Her presentation, titled Library Collection Development, was aimed at sharing her experience of working in the collection development and liaison sections within the LIS ecosystem. 

“This librarian-cum-computer science lecturer has the benefit of both worlds, having worked in private and public academic libraries such as Stafford University and City University of New York respectively,” says Monde Madiba, Deputy Director: Collection Development and Management of LIS at the University of the Free State.

San Jose, the oldest public university in the western US, is located in the heart of Silicon Valley, serving more than 33 000 students enrolled in 10 colleges and 67 departments.

According to Dr Megwalu, the tight budgets that public academic libraries such as San Jose receive, call for proper assessment of library collections in order to deal with the constraints. She emphasised the need to “uphold quality within the constraints”.

Moving from collecting information to creating information

Some of the ideas that Dr Megwalu shared for conducting assessment and collection development, includes the following:
• Change the library’s image from being a collector of information to being the creator of information.
• Consider the size of the different departments: some may need little or no attention due to size, while others may need close attention due to intensive research by lecturers within the department.
• Identify gaps and focus your attention on filling them with the relevant collection.
• Make sure that you are aware of the accreditation period of different programmes, since the role that academic libraries play in collection development is recognised by such agencies.
• Build a lasting and sustainable relationship with departments. This includes knowing the lecturers’ research interests, assisting the newly established departments, attending free webinars, and participating in student activities.
• Ensure equal distribution of the budget and ensure that everyone has equal access to it.
• Create a timetable where everyone knows when to submit requests for prescribed books. Make it clear that it takes approximately three weeks on average for ordered books to be delivered.
• Develop department-specific collection development policies.
• Be ready to move with the times, e.g. replace DVDs in favour of video-streaming services.
• Shift towards a 100% electronic reference collection.
• Consider having an electronic version for popular but currently in-print collections.
• Develop an indigenous collection based on the contributions of communities around the university.
• Create a portal for open educational resources (OERs) from participating institutions across the globe.

“Dr Megwalu’s presentation was not only informative but a testimony that collection development and assessment are dynamic and driven by passion and love,” says Madiba.

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept