Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 July 2021 | Story Ruan Bruwer | Photo UFS Photo Archive

Two athletes, both employees of the University of the Free State (UFS), are now giving back to the sport in administrative roles.

Kesa Molotsane and Louzanne Coetzee are making time in their work and training schedules to serve the sports in which they have represented their country – Molotsane in cross-country and Coetzee in the 1 500 m and 800 m T11 category for athletes with a disability.

Louzanne_web content
Louzanne Coetzee Photo: UFS Photo Archive 

Coetzee is again heading for the Paralympic Games in Tokyo. She is a nominee for the International Paralympic Committee Athletes’ Council. Six representatives will be chosen at the Paralympics.

Coetzee was recently elected to the South African Sports Confederation and Olympic Committee Athletes’ Commission. She is also an athlete representative of the South African Sports Association for Physically Disabled.

Molotsane was co-opted into the National Executive Committee of University Sport South Africa as an assessor. She is also the new vice-chairperson of the Athletics South Africa Athletes Commission.

Kesa Molotsane_content
Kesa Molotsane. Photo: Supplied

“My biggest dream is to enable athletes to dream big, and for their dreams to be recognised. I would like to see them enjoy their sport,” said Molotsane.

“I think I probably missed a lot of opportunities in my career due to a lack of funding, so I don’t want to see anyone face the same situation.”

Molotsane was also recently named as one of two ambassadors for the SPAR Grand Prix Series. 

According to Coetzee, a former member of the Student Representative Council at the UFS, she believes that it is important for a current sportsperson to contribute and give input in their sport. 

“I enjoy leadership, it is perhaps a gift of mine. Serving the sport in that capacity is not something that is too much of an effort or takes too much of my time. I enjoy contributing and to see something move in a direction.”

News Archive

Champagne and cancer have more in common than you might think
2013-05-08

 

Photo: Supplied
08 May 2013

No, a glass of champagne will not cure cancer....

…But they have more in common than you might think.

Researchers from the Departments of Microbial Biochemical and Food Biotechnology, Physics and the Centre for Microscopy at the University of the Free State in South Africa were recently exploring the properties of yeast cells in wine and food to find out more of how yeast was able to manufacture the gas that caused bread to rise, champagne to fizz and traditional beer to foam. And the discovery they made is a breakthrough that may have enormous implications for the treatment of diseases in humans.

The team discovered that they could slice open cells with argon gas particles, and look inside. They were surprised to find a maze of tiny passages like gas chambers that allowed each cell to ‘breathe.’ It is this tiny set of ‘lungs’ that puts the bubbles in your bubbly and the bounce in your bread.

But it was the technique that the researchers used to open up the cells that caught the attention of the scientists at the Mayo Clinic (Tumor Angiogenesis and Vascular Biology Research Centre) in the US.

Using this technology, they ultimately aim to peer inside cells taken from a cancer patient to see how treatment was progressing. In this way they would be able to assist the Mayo team to target treatments more effectively, reduce dosages in order to make treatment gentler on the patient, and have an accurate view of how the cancer was being eliminated.

“Yes, we are working with the Mayo Clinic,” said Profes Lodewyk Kock from the Microbial, Biochemical and Food Biotechnology Department at the UFS.

“This technique we developed has enormous potential for cell research, whether it is for cancer treatment or any other investigation into the working of cells. Through nanotechnology, and our own invention called Auger-architectomics, we are able to see where no-one has been able to see before.”

The team of Prof Kock including Dr Chantel Swart, Kumisho Dithebe, Prof Hendrik Swart (Physics, UFS) and Prof Pieter van Wyk (Centre for Microscopy, UFS) unlocked the ‘missing link’ that explains the existence of bubbles inside yeasts, and incidentally have created a possible technique for tracking drug and chemotherapy treatment in human cells.

Their work has been published recently in FEMS Yeast Research, the leading international journal on yeast research. In addition, their discovery has been selected for display on the cover page of all 2013 issues of this journal.

One can most certainly raise a glass of champagne to celebrate that!

There are links for video lectures on the technique used and findings on the Internet at:

1. http://vimeo.com/63643628 (Comic version for school kids)

2. http://vimeo.com/61521401 (Detailed version for fellow scientists)

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept