Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 July 2021 | Story Ruan Bruwer | Photo UFS Photo Archive

Two athletes, both employees of the University of the Free State (UFS), are now giving back to the sport in administrative roles.

Kesa Molotsane and Louzanne Coetzee are making time in their work and training schedules to serve the sports in which they have represented their country – Molotsane in cross-country and Coetzee in the 1 500 m and 800 m T11 category for athletes with a disability.

Louzanne_web content
Louzanne Coetzee Photo: UFS Photo Archive 

Coetzee is again heading for the Paralympic Games in Tokyo. She is a nominee for the International Paralympic Committee Athletes’ Council. Six representatives will be chosen at the Paralympics.

Coetzee was recently elected to the South African Sports Confederation and Olympic Committee Athletes’ Commission. She is also an athlete representative of the South African Sports Association for Physically Disabled.

Molotsane was co-opted into the National Executive Committee of University Sport South Africa as an assessor. She is also the new vice-chairperson of the Athletics South Africa Athletes Commission.

Kesa Molotsane_content
Kesa Molotsane. Photo: Supplied

“My biggest dream is to enable athletes to dream big, and for their dreams to be recognised. I would like to see them enjoy their sport,” said Molotsane.

“I think I probably missed a lot of opportunities in my career due to a lack of funding, so I don’t want to see anyone face the same situation.”

Molotsane was also recently named as one of two ambassadors for the SPAR Grand Prix Series. 

According to Coetzee, a former member of the Student Representative Council at the UFS, she believes that it is important for a current sportsperson to contribute and give input in their sport. 

“I enjoy leadership, it is perhaps a gift of mine. Serving the sport in that capacity is not something that is too much of an effort or takes too much of my time. I enjoy contributing and to see something move in a direction.”

News Archive

UFS researcher engineers metal surfaces
2015-03-03

Shaun Cronjé, a PhD student, in a surface characterisation laboratory at the UFS.

It is well known that the surface of a component is much more vulnerable to damage than the interior, and that surface-originated degradation such as wear, corrosion, and fracture will eventually destroy the component.

“Engineering the surface, based on scientific knowledge, is essential to control these damaging processes. It also creates electronic and geometric structures on the surface which opens up a world of new devices, especially considering the properties on the nano-length scale,” said Prof Wiets Roos from the Department of Physics at the University of the Free State (UFS).

At elevated temperatures, atoms are more mobile and can migrate to grain boundaries and surfaces, which have a major influence on material properties. The redistribution of solute atoms between the surface and the bulk of the material is known as segregation. Knowing the behaviour of segregation at the surface/environment interface can be very useful in the development of new materials. As an example materials can be improved higher efficiency and lower fuel consumption, thus reducing environmental pollution.

The main aims of Prof Roos’s research are to understand surface segregation, use it as a tool, and contribute to the various surface engineering fields.

The surface characterisation laboratories at the UFS are well equipped to do high temperature segregation measurements, and have already proven a success, not only in the ability to prepare the specimens for characterisation, but also in developing models and procedures to quantify the segregation parameters.

The most recent results have demonstrated the importance of taking evaporation into account during quantification.” This has laid the foundation for future studies by installing the necessary hardware in a surface characterisation spectrometer, establishing experimental protocols, and improving an existing model (developed in this laboratory) for simulating segregation profiles,” said Prof Roos.

Segregation parameters allow the researcher to predict and utilise the surface concentration behaviour as a function of temperature and time. “This not only contributes to fields involving corrosion, oxidation, sintering, wear, chemical poisoning, powder metallurgy, and lubrication but adds to the development of self-healing devices,” said Prof Roos.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept