Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
08 July 2021 | Story Rulanzen Martin | Photo Supplied
For Prof Anthea van Jaarsveld, the balance between science, theoretical and practical experience is important for a balanced industry.

Her unique approach to Drama and Theatre Arts makes Prof Anthea van Jaarsveld the most suitable person to take over the reins as Head of the UFS Department of Drama and Theatre Arts. Prof Van Jaarsveld was officially appointed as head of this special department this year. 

The Department of Drama at the UFS is one of the biggest in the country, and according to Prof Van Jaarsveld it is also the best, because the department produces some of the finest in the industry. Her main goal as head of department is to bring about a subtle change in emphasis that will ultimately make a real contribution to employability, a greater variety of job opportunities, and practice-orientated research. “My ultimate goal is therefore an approach within which academy and practice will find each other for the benefit of both,” says Prof Van Jaarsveld.

Science, theatre and drama collide 

Prof Van Jaarsveld has a scientific approach to drama and theatre arts. She never acted professionally. It is precisely from a scientific perspective that her knowledge of the theorising and contextualisation of drama text, theatre concepts, and the film industry is applied in order to maintain a balance in a profession where the emphasis on practical experience is overwhelming.  

She studied Drama at the UFS and was also employed as Drama teacher at Eunice Girls’ School. Following this, she started working as lecturer in the Department of Afrikaans and Dutch. “There I focused on the Drama genre in Afrikaans; therefore, I never actually left drama and theatre,” says Prof Van Jaarsveld. In 2018, she returned to the Department of Drama. 

Upon her return to the department where she started her studies, her aim is to ensure that the department again complies with the total package of the UFS and to make sure “that our students are prepared for a multifaceted and dynamic industry on a practical level”. 

Prof Van Jaarsveld took over from Prof Nico Luwes who retired in 2019. 

News Archive

Nuclear Medicine on the forefront of cancer research
2017-07-10

Description: Nuclear Medicine on the forefront of cancer research Tags: Nuclear Medicine, cancer research, Dr Je’nine Horn-Lodewyk’s, tumour detection method, cancer, Department of Nuclear Medicine 

Dr Je’nine Horn-Lodewyk’s tumour detection method
could be the cost-effective breakthrough needed to decrease
the mortality rate in breast cancer patients.
Photo: Anja Aucamp

The field of Nuclear Medicine in South Africa and the rest of the world are expanding rapidly due to the development of hybrid cameras and new radiopharmaceuticals. These developments have a huge impact on the diagnosis and therapy of cancer.

The most advanced of these cameras, Positron emission tomography combined with normal CTs (PETCT), are not yet widely available in South Africa due to the cost of the cameras and the radiopharmaceuticals. A more cost-effective alternative can be of great benefit. To achieve this, the focus should be on developing new radiopharmaceuticals that can be used with the current cost-effective gamma cameras, according to University of the Free State researcher, Dr Je’nine Horn-Lodewyk from the Department of Nuclear Medicine.

Fluorodeoxyglucose (18F-FDG), a radiolabelled glucose analogue, is currently the radiopharmaceutical most commonly used in PET/CT imaging for mainly oncology indications. Although it is considered the gold standard for imaging in several malignancies, it does have certain disadvantages. An 18F-FDG PET/CT diagnostic imaging study can cost between R25 000 and R35 000 for a single patient in the private sector. The 18F-FDG is also more radioactive, which requires much stricter handling and shielding to avoid high radiation dosages to staff and patients.

Successful research potential innovative solution
In the search for the ideal radiopharmaceutical for tumour detection, the South African National Nuclear Energy Corporation (Necsa) developed a local synthesis process for ethylenedicysteine-deoxyglucose (EC-DG). EC-DG is also a glucose analogue similar to FDG. They succeeded in labelling the compound with Technetium-99-metastable-pertechnetate (99mTcO4-), the most common nuclear medicine isotope used for approximately 95% of nuclear medicine procedures, creating 99mTc-EC-DG.

In partnership with Dr Horn-Lodewyk, this compound was successfully used in various animal models and clinical scenarios, resulting in approval by the Medicine Control Council to use it in a human study. Research is also planned in order to investigate diagnostic accuracy in other cancers like lymphoma.  The end result of this research can produce a radiopharmaceutical that is cost effective, does not require the use of costly specialised equipment, has no significant side-effects, no special patient preparation, renders late imaging possible, and has decreased radiation risks.

Dr Horn-Lodewyk is grateful for the support of her mentor, Prof Anton Otto, as well as Dr Gert Engelbrecht, Head of the Department of Nuclear Medicine, Prof Jan Rijn Zeevaart from North-West University’s Preclinical Drug Development Platform and Necsa, and Judith Wagener from Necsa. This innovative research would also not have been possible without the financial assistance of Dr Glen Taylor and Eleanor van der Westhuizen in the Directorate of Research Development.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept