Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
08 July 2021 | Story Rulanzen Martin | Photo Supplied
For Prof Anthea van Jaarsveld, the balance between science, theoretical and practical experience is important for a balanced industry.

Her unique approach to Drama and Theatre Arts makes Prof Anthea van Jaarsveld the most suitable person to take over the reins as Head of the UFS Department of Drama and Theatre Arts. Prof Van Jaarsveld was officially appointed as head of this special department this year. 

The Department of Drama at the UFS is one of the biggest in the country, and according to Prof Van Jaarsveld it is also the best, because the department produces some of the finest in the industry. Her main goal as head of department is to bring about a subtle change in emphasis that will ultimately make a real contribution to employability, a greater variety of job opportunities, and practice-orientated research. “My ultimate goal is therefore an approach within which academy and practice will find each other for the benefit of both,” says Prof Van Jaarsveld.

Science, theatre and drama collide 

Prof Van Jaarsveld has a scientific approach to drama and theatre arts. She never acted professionally. It is precisely from a scientific perspective that her knowledge of the theorising and contextualisation of drama text, theatre concepts, and the film industry is applied in order to maintain a balance in a profession where the emphasis on practical experience is overwhelming.  

She studied Drama at the UFS and was also employed as Drama teacher at Eunice Girls’ School. Following this, she started working as lecturer in the Department of Afrikaans and Dutch. “There I focused on the Drama genre in Afrikaans; therefore, I never actually left drama and theatre,” says Prof Van Jaarsveld. In 2018, she returned to the Department of Drama. 

Upon her return to the department where she started her studies, her aim is to ensure that the department again complies with the total package of the UFS and to make sure “that our students are prepared for a multifaceted and dynamic industry on a practical level”. 

Prof Van Jaarsveld took over from Prof Nico Luwes who retired in 2019. 

News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept