Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 July 2021 | Story Dr Nitha Ramnath | Photo Pixabay

Graduates in the University of the Free State School of Accountancy achieved exceptional results in the South African Institute of Chartered Accountants (SAICA) Initial Test of Competence (ITC).  The UFS achieved an 81% pass rate in the April ITC exam for first-time writers of the BAcc Honours and PGDip (Chartered Accountancy) programmes, compared to the national average of 70%. 

The ITC examination is the first of two qualifying professional examinations required to qualify as a chartered accountant (CA(SA)) in South Africa and is written by graduates shortly after completion of their formal university studies.  There are two sittings for this examination annually, and the April exam is the first for 2021.

“These results were attained despite the very challenging circumstances of the emergency remote teaching environment during 2020 and is testament to the quality of our CA programme and the hard work and dedication of the staff of the School of Accountancy,” said Prof Frans Prinsloo, Director: School of Accountancy. He added that, “the results confirm the ‘quality’ / ‘excellence’ of our CA programme, and reinforce similar observations made by the SAICA monitoring team following their 2020 full visit (which included a detailed evaluation of our CA programme)”. 

Transformation of chartered accountancy profession

Seventy percent of UFS graduates passed the April 2021 ITC examination, including 38 African and 3 Coloured graduates, while 10 out of 13 of the Thuthuka Bursary Programme graduates of 2020 passed. More than 60% of UFS graduates who passed the examination are black (i.e., African, Coloured, and Indian), with a pass rate of 73% compared to the national average of 52%, which include first-time and repeat candidates. The results are testimony of the interventions put in place to contribute to the transformation of the chartered accountancy profession. 

Student-centred teaching approach
      
The School of Accountancy follows a ‘student-centred’ teaching and learning approach. During the COVID-19 pandemic, teaching was predominantly remote and was adapted to include ongoing, clear communication about the academic programme, comprehensive teaching materials containing additional explanations, learning notes, comments, cross-references to theory, and step-by-step learning guides per topic to enable students to navigate their learning. 

Other interventions have also been put in place to support students financially via the school’s INTRABAS unit, mentorship and peer support initiatives, detailed tracking of student participation and performance, follow-up with students, and regular ‘check-ins’ with the student body to consider the student voice and ensure the relevance of the teaching offering. 

The UFS is looking forward to the journey of our candidates and their contributions to the world of work. 

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept