Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 July 2021 | Story Dr Nitha Ramnath | Photo Pixabay

Graduates in the University of the Free State School of Accountancy achieved exceptional results in the South African Institute of Chartered Accountants (SAICA) Initial Test of Competence (ITC).  The UFS achieved an 81% pass rate in the April ITC exam for first-time writers of the BAcc Honours and PGDip (Chartered Accountancy) programmes, compared to the national average of 70%. 

The ITC examination is the first of two qualifying professional examinations required to qualify as a chartered accountant (CA(SA)) in South Africa and is written by graduates shortly after completion of their formal university studies.  There are two sittings for this examination annually, and the April exam is the first for 2021.

“These results were attained despite the very challenging circumstances of the emergency remote teaching environment during 2020 and is testament to the quality of our CA programme and the hard work and dedication of the staff of the School of Accountancy,” said Prof Frans Prinsloo, Director: School of Accountancy. He added that, “the results confirm the ‘quality’ / ‘excellence’ of our CA programme, and reinforce similar observations made by the SAICA monitoring team following their 2020 full visit (which included a detailed evaluation of our CA programme)”. 

Transformation of chartered accountancy profession

Seventy percent of UFS graduates passed the April 2021 ITC examination, including 38 African and 3 Coloured graduates, while 10 out of 13 of the Thuthuka Bursary Programme graduates of 2020 passed. More than 60% of UFS graduates who passed the examination are black (i.e., African, Coloured, and Indian), with a pass rate of 73% compared to the national average of 52%, which include first-time and repeat candidates. The results are testimony of the interventions put in place to contribute to the transformation of the chartered accountancy profession. 

Student-centred teaching approach
      
The School of Accountancy follows a ‘student-centred’ teaching and learning approach. During the COVID-19 pandemic, teaching was predominantly remote and was adapted to include ongoing, clear communication about the academic programme, comprehensive teaching materials containing additional explanations, learning notes, comments, cross-references to theory, and step-by-step learning guides per topic to enable students to navigate their learning. 

Other interventions have also been put in place to support students financially via the school’s INTRABAS unit, mentorship and peer support initiatives, detailed tracking of student participation and performance, follow-up with students, and regular ‘check-ins’ with the student body to consider the student voice and ensure the relevance of the teaching offering. 

The UFS is looking forward to the journey of our candidates and their contributions to the world of work. 

News Archive

NRF grants of millions for Kovsie professors
2013-05-20

 

Prof Martin Ntwaeaborwa (left) and Prof Bennie Viljoen
20 May 2013


Two professors received research grants from the National Research Foundation (NRF). The money will be used for the purchase of equipment to add more value to their research and take the university further in specific research fields.

Prof Martin Ntwaeaborwa from the Department of Physics has received a R10 million award, following a successful application to the National Nanotechnology Equipment Programme (NNEP) of the NRF for a high-resolution field emission scanning electron microscope (SEM) with integrated cathodoluminescence (CL) and energy dispersive X-ray spectrometers (EDS).

Prof Bennie Viljoen from the Department of Microbial, Biochemical and Food Biotechnology has also been awarded R1,171 million, following a successful application to the Research Infrastructure Support Programme (RISP) for the purchase of a LECO CHN628 Series Elemental Analyser with a Sulphur add-on module.

Prof Ntwaeaborwa says the SEM-CL-EDS’ state-of-the art equipment combines three different techniques in one and it is capable of analysing a variety of materials ranging from bulk to individual nanoparticles. This combination is the first of its kind in Africa. This equipment is specifically designed for nanotechnology and can analyse particles as small as 5nm in diameter, a scale which the old tungsten SEM at the Centre of Microscopy cannot achieve.

The equipment will be used to simultaneously analyse the shapes and sizes of submicron particles, chemical composition and cathodoluminescence properties of materials. The SEM-CL-EDS is a multi-user facility and it will be used for multi- and interdisciplinary research involving physics, chemistry, materials science, life sciences and geological sciences. It will be housed at the Centre of Microscopy.
“I have no doubt that this equipment is going to give our university a great leap forward in research in the fields of electron microscopy and cathodoluminescence,” Prof Ntwaeaborwa said.

Prof Viljoen says the analyser is used to determine nitrogen, carbon/nitrogen, and carbon/hydrogen/nitrogen in organic matrices. The instrument utilises a combustion technique and provides a result within 4,5 minutes for all the elements being determined. In addition to the above, the machine also offers a sulphur add-on module which provides sulphur analysis for any element combination. The CHN 628 S module is specifically designed to determine the sulphur content in a wide variety of organic materials such as coal and fuel oils, as well as some inorganic materials such as soil, cement and limestone.

The necessity of environmental protection has stimulated the development of various methods, allowing the determination of different pollutants in the natural environment, including methods for determining inorganic nitrogen ions, carbon and sulphur. Many of the methods used so far have proven insufficiently sensitive, selective or inaccurate. The availability of the LECO analyser in a research programme on environmental pollution/ food security will facilitate accurate and rapid quantification of these elements. Ions in water, waste water, air, food products and other complex matrix samples have become a major problem and studies are showing that these pollutants are likely to cause severe declines in native plant communities and eventually food security.

“With the addition of the analyser, we will be able to identify these polluted areas, including air, water and land pollution, in an attempt to enhance food security,” Viljoen said. “Excess levels of nitrogen and phosphorous wreaking havoc on human health and food security, will be investigated.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept