Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 July 2021 | Story Dr Nitha Ramnath | Photo Pixabay

Graduates in the University of the Free State School of Accountancy achieved exceptional results in the South African Institute of Chartered Accountants (SAICA) Initial Test of Competence (ITC).  The UFS achieved an 81% pass rate in the April ITC exam for first-time writers of the BAcc Honours and PGDip (Chartered Accountancy) programmes, compared to the national average of 70%. 

The ITC examination is the first of two qualifying professional examinations required to qualify as a chartered accountant (CA(SA)) in South Africa and is written by graduates shortly after completion of their formal university studies.  There are two sittings for this examination annually, and the April exam is the first for 2021.

“These results were attained despite the very challenging circumstances of the emergency remote teaching environment during 2020 and is testament to the quality of our CA programme and the hard work and dedication of the staff of the School of Accountancy,” said Prof Frans Prinsloo, Director: School of Accountancy. He added that, “the results confirm the ‘quality’ / ‘excellence’ of our CA programme, and reinforce similar observations made by the SAICA monitoring team following their 2020 full visit (which included a detailed evaluation of our CA programme)”. 

Transformation of chartered accountancy profession

Seventy percent of UFS graduates passed the April 2021 ITC examination, including 38 African and 3 Coloured graduates, while 10 out of 13 of the Thuthuka Bursary Programme graduates of 2020 passed. More than 60% of UFS graduates who passed the examination are black (i.e., African, Coloured, and Indian), with a pass rate of 73% compared to the national average of 52%, which include first-time and repeat candidates. The results are testimony of the interventions put in place to contribute to the transformation of the chartered accountancy profession. 

Student-centred teaching approach
      
The School of Accountancy follows a ‘student-centred’ teaching and learning approach. During the COVID-19 pandemic, teaching was predominantly remote and was adapted to include ongoing, clear communication about the academic programme, comprehensive teaching materials containing additional explanations, learning notes, comments, cross-references to theory, and step-by-step learning guides per topic to enable students to navigate their learning. 

Other interventions have also been put in place to support students financially via the school’s INTRABAS unit, mentorship and peer support initiatives, detailed tracking of student participation and performance, follow-up with students, and regular ‘check-ins’ with the student body to consider the student voice and ensure the relevance of the teaching offering. 

The UFS is looking forward to the journey of our candidates and their contributions to the world of work. 

News Archive

Discovery in Scorpius constellation may signify clean energy for Earth
2017-01-23

 Description: Discovery in Scorpius constellation may signify clean energy for Earth Tags: Discovery in Scorpius constellation may signify clean energy for Earth

Earlier this year, a group of international astronomers
announced the discovery of an exotic binary star system,
AR Scorpii. The system is in the Scorpius constellation.
Photos: Supplied

See article on Nature’s website 

In future, stargazers and astronomers will look at the Scorpius constellation near the Milky Way with new eyes. Earlier this year, a group of international astronomers announced the discovery of an exotic binary star system, AR Scorpii. The system is in the Scorpius constellation.

Prof Pieter Meintjes, researcher in the Department of Physics at the University of the Free State (UFS), worked with four colleagues on what he describes as a “wonderful discovery”. This sensational discovery, which could lead to the production of cleaner energy on Earth, will be published in the research journal, Nature, early in 2017.

Model developed to interpret new set of measurements
The exotic binary star which was discovered consists of a red dwarf and a white dwarf revolving around each other every 3,5 hours. The binary system showed very prominent pulsations of 117 and 118 seconds respectively. The pulsations can be explained by a bundle radiation produced by the white dwarf star.

“These new observations have shown that the radiation is strongly polarised, a sign that we are dealing with synchrotron radiation here. Synchrotron radiation is produced by electrons accelerated to extremely high energy levels in the magnetic field of the white dwarf star,” says Prof Meintjes.

He developed a theoretical model to interpret a new set of measurements that was taken by the 1,9 m telescope and the 10 m SALT telescope at the South African Astronomical Observatory (SAA0).

Totally unique phenomenon could contribute to energy production on Earth
“I further indicated that the interaction between the magnetic fields of the white dwarf star and the red dwarf star induces secondary processes that specifically describe the behaviour of the radiation in the radio band and infrared band accurately. AR Sco is the first white-red dwarf binary system of which all the pulsated radiation could be explained by the synchrotron process, which is totally unique,” says Prof Meintjes.

According to Prof Meintjes, the value of the model lies in the fact that the processes which produce the radiation in AR Sco, can also be applied to produce energy on Earth.

 

Plasma reactors are based on roughly the same processes which apply in AR Sco, and with refining, it could be utilised to generate electricity in future. This will be much cleaner than nuclear energy.

 

The model developed by Prof Meintjes explains all the radiation in the system – from radio waves to X-rays – in terms of electrons accelerated to extremely high energy levels by electric fields in the system, which then produce synchrotron radiation over a very wide band of the electromagnetic spectrum.

Prof Meintjes is currently working on a follow-up article examining the evolution of the AR Sco, in other words, the origin of such a unique system and the final state towards which it is evolving. “My vision for the immediate future is therefore to develop a model for the evolution of the source concerned,” he says.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept