Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 July 2021 | Story Xolisa Mnukwa | Photo Supplied
Improving student well-being through collaborative food provisioning initiatives.

In commemoration of Nelson Mandela and his commitment to justice, human rights and fundamental freedoms, a profound belief in the equality and dignity of every woman and man, the University of the Free State (UFS) reflects on the university’s food gardening project, a collaborative initiative established to address student food insecurity in a sustainable manner. 

As stipulated in the 2021 UFS Food Environment task team report, food insecurity among students in the higher education sector has emerged over the past decade as a global threat to student success. According to the internationally accepted definition of food insecurity, these students experience limited or uncertain availability of nutritionally adequate and safe foods or have limited or uncertain ability to acquire acceptable foods in socially acceptable ways.

The UFS Food Environment Office, in collaboration with Kovsie ACT, the UFS Department of Nutrition and Dietetics, FARMOVS, Tiger Brands, Siyakhana Food Gardens and other businesses, has embarked on an 18-month journey to address this problem within the university. 

The project kicked off with the building of two large food tunnels that aid students with fresh produce on a regular but controlled basis. The project has received financial support from organisations including Tiger Brands, Siyakhana Food Gardens, and Sakata Seeds.

A recap of the UFS gardening project and food harvested

The gardens produced foods such as Swiss chard, beetroot, carrots, and cabbage that were consistently distributed to vulnerable students from March 2020 up until now. Onions, lettuce, and spinach also formed part of the food parcels prepared for students, accompanied by food donations from UFS staff and students, Tiger Brands, and the Shoprite Group through the UFS food bank.

In November 2020, a brainstorming workshop was held to reflect on the status quo of the UFS gardening project and the value it adds to a larger integrated food provisioning system at the university. The workshop addressed topics including the planting and production of relevant crops; processing and distribution of products harvested; and the creation of a training curriculum pertaining to the activities of the UFS gardening project.

“By creating our own food gardens, we share valuable knowledge with the rest of the team involved with this project and further uplift our communities. After all, small-scale sustainable food production could lower one’s environmental footprint and contribute to a healthier lifestyle,” stated Carien Denner from the UFS Department of Sustainable Food Systems and Development. 

Denner goes on to explain that the mutually beneficial relationship of all stakeholders involved in the maintenance of the food gardening project has the potential to expand in the future to further combat student food insecurity in a sustainable manner. 

What the UFS food garden project anticipates for the future

According to Denner, the food tunnels at Lengau will be moved to the Paradys experimental farm. One tunnel will be converted into a hydroponic system covered in plastic, and the other will be covered in netting and will be planted directly into the ground. Financial aid for the moving of the tunnels was provided by the UFS Dean of Natural and Agricultural Sciences and Prof Rudolf from the Siyakhana Food Gardens. 

The produce from these two tunnels will be sold to UFS staff and some will be distributed to students through the UFS No Student Hungry Programme (NSH). Denner mentioned that the team are further looking to empower students to grow foods at their own homes by involving them in the planting and harvesting process of the gardening project. 
The continuation of the food gardening project and other support initiatives facilitated by the Food Environment task team thrive through collaborations with businesses, NPOs, UFS staff and students, to address food insecurity and malnutrition among students. 

Staff and students are encouraged to contribute by collecting non-perishable food items for the UFS Food Environment Office.

Contact Annelize Visagie at VisagieA@ufs.ac.za or call +27 51 401 3258 to make contributions. 

News Archive

Bloemfontein's quality of tap water compares very favourably with bottled water
2009-08-04

The quality of the drinking water of five suburbs in Bloemfontein is at least as good as or better than bottled water. This is the result of a standard and chemical bacterial analysis done by the University of the Free State’s (UFS) Centre for Environmental Management in collaboration with the Institute for Groundwater Studies (IGS).

Five samples were taken from tap water sources in the suburbs of Universitas, Brandwag, Bain’s Vlei, Langenhoven Park and Bayswater and 15 samples were taken of different brands of still and unflavoured bottled water. The samples were analysed at the laboratory of the IGS, while the interpretation of the analysis was done by the Centre for Environmental Management.

“We wanted to evaluate the difference in quality for human consumption between tap water and that of the different brands of bottled water,” said Prof. Maitland Seaman, Head of the Centre for Environmental Management.

“With the exception of two samples produced by multinational companies at their plants in South Africa, the different brands of bottled water used for the study were produced by South African companies, including a local small-scale Bloemfontein producer,” said Prof. Seaman.

According to the labels, the sources of the water vary from pure spring water, to partial reverse osmosis (as an aid to standardise salt, i.e. mineral, content), to only reverse osmosis (to remove salts). (Reverse osmosis is a process in which water is forced under pressure through a pipe with minute pores through which water passes but no – or very low concentrations of – salts pass.)

According to Prof. Seaman, the analysis revealed some interesting findings, such as:

• It is generally accepted that drinking water should have an acceptable level of salt content, as the body needs salts. Most mineral contents were relatively higher in the tap water samples than the bottled water samples and were very much within the acceptable range of drinkable water quality. One of the bottled samples, however, had a very low mineral content, as the water was produced by reverse osmosis, as stated on the bottle. While reverse osmosis is used by various producers, most producers use it as an aid, not as a single method to remove nearly all the salts. Drinking only such water over a prolonged period may probably have a negative effect on the human physiology.

• The pH values of the tap water samples (8,12–8,40) were found to be slightly higher (slightly alkaline), like in all south-eastern Free State rivers (from where the water is sourced) than the pH of most of the bottled water samples, most of which are sourced and/or treated in other areas. Two brands of bottled water were found to have relatively low pH levels (both 4,5, i.e. acidic) as indicated on their bottles and as confirmed by the IGS analysis. The health implication of this range of pH is not significant.

• The analysis showed differences in the mineral content given on the labels of most of the water bottles compared to that found by IGS analysis. The possibility of seasonal fluctuation in content, depending on various factors, is expected and most of the bottling companies also indicate this on their labels. What was a rather interesting finding was that two pairs of bottled water brands claimed exactly the same mineral content but appeared under different brand names and were also priced differently. In each case, one of the pair was a well-known house brand, and the other obviously the original producer. In one of these paired cases, the house brand stated that the water was spring water, while the other (identical) “original” brand stated that it was spring water treated by reverse osmosis and oxygen-enriched.

• Nitrate (NO3) levels were uniformly low except in one bottled sample, suggesting a low (non-threatening) level of organic pollution in the source water. Otherwise, none of the water showed any sign of pollution.

• The bacterial analysis confirmed the absence of any traces of coliforms or E.coli in any of the samples, as was also indicated by the bottling companies. This is very reassuring. What is not known is how all these waters were sterilised, which could be anything from irradiation to chlorine or ozone treatment.

• The price of the different brands of bottled water, each containing 500 ml of still water, ranged between R3,99 and R8,99, with R5,03 being the average price. A comparison between the least expensive and the most expensive bottles of water indicated no significant difference in quality. In fact, discrepancies were observed in the most expensive bottle in that the amount of Calcium (Ca) claimed to be present in it was found to be significantly different from what the analysis indicated (29,6 mg/l versus 0,92 mg/l). The alkalinity (CaCO3 mg/l) indicated on the bottle was also found to differ considerably (83 mg/l versus 9,4 mg/l). The concentration of Total Dissolved Salts (TDS) was not given on the product.

“The preference for bottled water as compared to Bloemfontein’s tap water from a qualitative perspective as well as the price discrepancy is unjustifiable. The environmental footprint of bottled water is also large. Sourcing, treating, bottling, packaging and transporting, to mention but a few of the steps involved in the processing of bottled water, entail a huge carbon footprint, as well as a large water footprint, because it also requires water for treating and rinsing to process bottled water,” said Prof. Seaman.

Media Release
Lacea Loader
Deputy Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
3 August 2009

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept