Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 July 2021 | Story Xolisa Mnukwa | Photo Supplied
Improving student well-being through collaborative food provisioning initiatives.

In commemoration of Nelson Mandela and his commitment to justice, human rights and fundamental freedoms, a profound belief in the equality and dignity of every woman and man, the University of the Free State (UFS) reflects on the university’s food gardening project, a collaborative initiative established to address student food insecurity in a sustainable manner. 

As stipulated in the 2021 UFS Food Environment task team report, food insecurity among students in the higher education sector has emerged over the past decade as a global threat to student success. According to the internationally accepted definition of food insecurity, these students experience limited or uncertain availability of nutritionally adequate and safe foods or have limited or uncertain ability to acquire acceptable foods in socially acceptable ways.

The UFS Food Environment Office, in collaboration with Kovsie ACT, the UFS Department of Nutrition and Dietetics, FARMOVS, Tiger Brands, Siyakhana Food Gardens and other businesses, has embarked on an 18-month journey to address this problem within the university. 

The project kicked off with the building of two large food tunnels that aid students with fresh produce on a regular but controlled basis. The project has received financial support from organisations including Tiger Brands, Siyakhana Food Gardens, and Sakata Seeds.

A recap of the UFS gardening project and food harvested

The gardens produced foods such as Swiss chard, beetroot, carrots, and cabbage that were consistently distributed to vulnerable students from March 2020 up until now. Onions, lettuce, and spinach also formed part of the food parcels prepared for students, accompanied by food donations from UFS staff and students, Tiger Brands, and the Shoprite Group through the UFS food bank.

In November 2020, a brainstorming workshop was held to reflect on the status quo of the UFS gardening project and the value it adds to a larger integrated food provisioning system at the university. The workshop addressed topics including the planting and production of relevant crops; processing and distribution of products harvested; and the creation of a training curriculum pertaining to the activities of the UFS gardening project.

“By creating our own food gardens, we share valuable knowledge with the rest of the team involved with this project and further uplift our communities. After all, small-scale sustainable food production could lower one’s environmental footprint and contribute to a healthier lifestyle,” stated Carien Denner from the UFS Department of Sustainable Food Systems and Development. 

Denner goes on to explain that the mutually beneficial relationship of all stakeholders involved in the maintenance of the food gardening project has the potential to expand in the future to further combat student food insecurity in a sustainable manner. 

What the UFS food garden project anticipates for the future

According to Denner, the food tunnels at Lengau will be moved to the Paradys experimental farm. One tunnel will be converted into a hydroponic system covered in plastic, and the other will be covered in netting and will be planted directly into the ground. Financial aid for the moving of the tunnels was provided by the UFS Dean of Natural and Agricultural Sciences and Prof Rudolf from the Siyakhana Food Gardens. 

The produce from these two tunnels will be sold to UFS staff and some will be distributed to students through the UFS No Student Hungry Programme (NSH). Denner mentioned that the team are further looking to empower students to grow foods at their own homes by involving them in the planting and harvesting process of the gardening project. 
The continuation of the food gardening project and other support initiatives facilitated by the Food Environment task team thrive through collaborations with businesses, NPOs, UFS staff and students, to address food insecurity and malnutrition among students. 

Staff and students are encouraged to contribute by collecting non-perishable food items for the UFS Food Environment Office.

Contact Annelize Visagie at VisagieA@ufs.ac.za or call +27 51 401 3258 to make contributions. 

News Archive

Research by experts published in Nature
2011-06-02

 
The members of the research group are, from the left, front: Christelle van Rooyen, Mariana Erasmus, Prof. Esta van Heerden; back: Armand Bester and Prof. Derek Litthauer.
Photo: Gerhard Louw

A  research article on the work by a team of experts at our university, under the leadership of Prof. Esta van Heerden, and counterparts in Belgium and the USA has been published in the distinguished academic journal Nature today (Thursday, 2 June 2011).

The article – Nematoda from the terrestrial deep subsurface of South Africa – sheds more light on life in the form of a small worm living under extreme conditions in deep hot mines. It was discovered 1,3 km under the surface of the earth in the Beatrix Goldmine close to Welkom and is the first multi-cellular organism that was found so far beneath the surface of the earth. The worm (nematode) was found in between a rock face that is between 3 000 and 12 000 years old.

The research can shed some new light on the possibility of life on other planets, previously considered impossible under extreme conditions. It also expands the possibilities into new areas where new organisms may be found.

These small invertebrates live in terrestrial soil subjected to stress almost for 24 hours They live through sunshine, rain, scorching temperatures and freezing conditions. Through time they developed a means to cope with harsh conditions. Terrestrial nematodes (roundworms, not to be confused or related to earthworms) are among those very tough small invertebrates that deal with those conditions everywhere. After insects they are the most dominant multi-cellular (metazoan) species on the planet having a general size of 0,5 to 1 mm and are among the oldest metazoans on the planet, Nature says in a statement on the article.

They inhabit nearly every imaginable habitat form the deep seas to the acid in pitcher . Some nematodes simply eat bacteria and these are the ones we study here. Terrestrial nematodes have developed a survival stage that can take them through hard times (absence of food, extreme temperatures, too little oxygen, crowding, and more).

At the head of the research was Prof. Gaetan Borgonie of the Ghent University in Belgium and a world leader in the discipline of nematode research. He was brought into contact with the South African research leader, Prof. Esta van Heerden, who set up a cooperation agreement with the University of Ghent and Prof. Borgonie. Prof. Van Heerden manages the Extreme Biochemistry group at the UFS and the research was funded by several research grants.

The search for worms began in earnest in 2007, but it was soon clear that the sampling strategy was insufficient. A massive sampling campaign in 2008-2009 in several mines led to the discovery of several nematodes and the new nematode species Halicephalobus mephisto. It is named after the legend of Faust where the devil, also known as the lord of the underworld is called Mephistopheles.

Nature says special filters had to be designed and installed on various boreholes. Unfortunately, there is no easy way of finding a magic formula and designs had to be adapted by trial and error; improving existing designs all the time. The work of the UFS Mechanical Workshop, which manufactured, adapted and helped design it, was crucial in this respect. Filters were left on the holes for varying periods, sometimes for a few hours and sometimes for months. Prof. Derek Litthauer from the UFS played a big role in sampling, filter designs and coming up with ideas for names for the new nematode with Prof. Borgonie.

Research showed that the nematodes can live in the deep for up to 12 000 years. Three students – Armand Bester, Mariana Erasmus and Christelle van Rooyen from the UFS – did the work on this.

The importance of multi-cellular animals living in the ultra-deep subsurface is twofold: The nematodes graze on the existing bacterial population and influence their turnover. Secondly, if more complex multi-cellular organisms can survive in the deep subsurface on earth, this may be good news when looking for life on other planets where the surface is considered too inhospitable (e.g. Mars). Complex life forms can be found in ecosystems previously thought to be uninhabitable. Nature says this expands the possibilities into new areas where new organisms may be discovered.

Future research will focus on selective boreholes to look for more metazoans, so that a better idea of the complexity of the ecosystems there can be obtained. It will also look for metazoans in the deep subsurface on other continents to determine similarities and differences.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept