Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 July 2021 | Story Xolisa Mnukwa | Photo Supplied
Improving student well-being through collaborative food provisioning initiatives.

In commemoration of Nelson Mandela and his commitment to justice, human rights and fundamental freedoms, a profound belief in the equality and dignity of every woman and man, the University of the Free State (UFS) reflects on the university’s food gardening project, a collaborative initiative established to address student food insecurity in a sustainable manner. 

As stipulated in the 2021 UFS Food Environment task team report, food insecurity among students in the higher education sector has emerged over the past decade as a global threat to student success. According to the internationally accepted definition of food insecurity, these students experience limited or uncertain availability of nutritionally adequate and safe foods or have limited or uncertain ability to acquire acceptable foods in socially acceptable ways.

The UFS Food Environment Office, in collaboration with Kovsie ACT, the UFS Department of Nutrition and Dietetics, FARMOVS, Tiger Brands, Siyakhana Food Gardens and other businesses, has embarked on an 18-month journey to address this problem within the university. 

The project kicked off with the building of two large food tunnels that aid students with fresh produce on a regular but controlled basis. The project has received financial support from organisations including Tiger Brands, Siyakhana Food Gardens, and Sakata Seeds.

A recap of the UFS gardening project and food harvested

The gardens produced foods such as Swiss chard, beetroot, carrots, and cabbage that were consistently distributed to vulnerable students from March 2020 up until now. Onions, lettuce, and spinach also formed part of the food parcels prepared for students, accompanied by food donations from UFS staff and students, Tiger Brands, and the Shoprite Group through the UFS food bank.

In November 2020, a brainstorming workshop was held to reflect on the status quo of the UFS gardening project and the value it adds to a larger integrated food provisioning system at the university. The workshop addressed topics including the planting and production of relevant crops; processing and distribution of products harvested; and the creation of a training curriculum pertaining to the activities of the UFS gardening project.

“By creating our own food gardens, we share valuable knowledge with the rest of the team involved with this project and further uplift our communities. After all, small-scale sustainable food production could lower one’s environmental footprint and contribute to a healthier lifestyle,” stated Carien Denner from the UFS Department of Sustainable Food Systems and Development. 

Denner goes on to explain that the mutually beneficial relationship of all stakeholders involved in the maintenance of the food gardening project has the potential to expand in the future to further combat student food insecurity in a sustainable manner. 

What the UFS food garden project anticipates for the future

According to Denner, the food tunnels at Lengau will be moved to the Paradys experimental farm. One tunnel will be converted into a hydroponic system covered in plastic, and the other will be covered in netting and will be planted directly into the ground. Financial aid for the moving of the tunnels was provided by the UFS Dean of Natural and Agricultural Sciences and Prof Rudolf from the Siyakhana Food Gardens. 

The produce from these two tunnels will be sold to UFS staff and some will be distributed to students through the UFS No Student Hungry Programme (NSH). Denner mentioned that the team are further looking to empower students to grow foods at their own homes by involving them in the planting and harvesting process of the gardening project. 
The continuation of the food gardening project and other support initiatives facilitated by the Food Environment task team thrive through collaborations with businesses, NPOs, UFS staff and students, to address food insecurity and malnutrition among students. 

Staff and students are encouraged to contribute by collecting non-perishable food items for the UFS Food Environment Office.

Contact Annelize Visagie at VisagieA@ufs.ac.za or call +27 51 401 3258 to make contributions. 

News Archive

Research contributes to improving quality of life for cancer patients
2016-11-21

Description: Inorganic Chemistry supervisors  Tags: Inorganic Chemistry supervisors

Inorganic Chemistry supervisors in the Radiopharmacy
Laboratory during the preparation of a typical complex
mixture to see how fast it reacts. Here are, from the left,
front: Dr Marietjie Schutte-Smith, Dr Alice Brink
(both scholars from the UFS Prestige
Scholar Programme), and Dr Truidie Venter (all three
are Thuthuka-funded researchers).
Back: Prof André Roodt and Dr Johan Venter.
Photo: Supplied

Imagine that you have been diagnosed with bone cancer and only have six months to live. You are in a wheelchair because the pain in your legs is so immense that you can’t walk anymore – similar to a mechanism eating your bones from the inside.

You are lucky though, since you could be injected with a drug to control the pain so effective that you will be able to get out of the wheelchair within a day-and-a-half and be able to walk again. Real-life incidents like these provide intense job satisfaction to Prof André Roodt, Head of Inorganic Chemistry at the University of the Free State (UFS). The research, which is conducted by the Inorganic Group at the UFS, contributes greatly to the availability of pain therapy that does not involve drugs, but improves the quality of life for cancer patients.

The research conducted by the Inorganic Group under the leadership of Prof Roodt, plays a major role in the clever design of model medicines to better detect and treat cancer.

The Department of Chemistry is one of approximately 10 institutions worldwide that conducts research on chemical mechanisms to identify and control cancer. “The fact that we are able to cooperate with the Departments of Nuclear Medicine and Medical Physics at the UFS, the Animal Research Centre, and other collaborators in South Africa and abroad, but especially the methodology we utilise to conduct research (studying the chemical manner in which drugs are absorbed in cancer as well as the time involved), enhances the possibility of making a contribution to cancer research,” says Prof Roodt.

Technique to detect cancer spots on bone
According to the professor, there are various ways of detecting cancer in the body. Cancer can, inter alia, be identified by analysing blood, X-rays (external) or through an internal technique where the patient is injected with a radioactive isotope.

Prof Roodt explains: “The doctor suspects that the patient has bone cancer and injects the person with a drug consisting of an isotope (only emits X-rays and does no damage to tissue) that is connected to a phosphonate (similar to those used for osteoporosis). Once the drug is injected, the isotope (Technetium-99m) moves to the spot on the bone where the cancer is located. The gamma rays in the isotope illuminate the area and the doctor can see exactly where treatment should be applied. The Technetium-99m has the same intensity gamma rays as normal X-rays and therefore operates the same as an internal X-ray supply.” With this technique, the doctor can see where the cancer spots are within a few hours.

The same technique can be used to identify inactive parts of the brain in Alzheimer patients, as well as areas of the heart where there is no blood supply or where the heart muscle is dead.

Therapeutic irradiation of cancer
For the treatment of pain connected with cancer, the isotope Rhenium-186 is injected. Similar to the manner in which the Technetium-99m phosphonate compound is ingested into the body, the Rhenium-186 phosphonate travels to the cancer spots. Patients thus receive therapeutic irradiation – a technique known as palliative therapy, which is excellent for treating pain. A dosage of this therapy usually lasts for about two months.

The therapy is, however, patient specific. The dosages should correspond with the occurrence and size of cancer spots in the patient’s body. First, the location of the cancer will be determined by means of a technetium scan. After that, the size of the area where the cancer occurs has to be determined. The dosage for addressing total pain distribution will be calculated according to these results.

Technique to detect cancer spots on soft tissue
Another technique to detect cancer as spots on bone or in soft tissue and organs throughout the body is by utilising a different type of irradiation, a so-called PET isotope. The Fluor-18 isotope is currently used widely, and in Pretoria a machine called a cyclotron was produced by Dr Gerdus Kemp, who is a former PhD graduate from the Inorganic Research Group. The F-18 is then hidden within a glucose molecule and a patient will be injected with the drug after being tranquillised and after the metabolism has been lowered considerably. The glucose, which is the ‘food' that cancer needs to grow, will then travel directly to the cancer area and the specific area where the cancer is located will thus be traced and ‘illuminated’ by the Fluor-18, which emits its own 'X-rays'.

In the late 80s, Prof Roodt did his own postdoctoral study on this research in the US. He started collaborating with the Department of Nuclear Medicine at the UFS in the early 90s, when he initiated testing for this research.

Through their research of more than 15 years, the Inorganic Group in the Department of Chemistry has made a major contribution to cancer research. Research on mechanisms for the detection of cancer, by designing new clever chemical agents, and the chemical ways in which these agents are taken up in the body, especially contributes to the development in terms of cancer therapy and imaging, and has been used by a number of hospitals in South Africa.

The future holds great promise
Prof Roodt and his team are already working on a bilateral study between the UFS and Kenya. It involves the linking of radio isotopes, as mentioned above, to known natural products (such as rooibos tea), which possess anti-cancer qualities.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept