Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
27 July 2021 | Story Leonie Bolleurs | Photo UFS Photo Archive
Prof Hendrik Swart played a key role in the Department of Physics acquiring the PHI Quantes XPS system, the first in Africa and one of only 20 in the world.

The state-of-the-art equipment in the Department of Physics at the University of the Free State (UFS) differentiates this department from its competitors. Availability of the equipment makes it possible for researchers as well as students to deliver work that receives national and international recognition. 

Recently, the department acquired a PHI Quantes XPS system, the first in Africa and one of only 20 in the world. 

Creating better phosphor 

“The Quantes XPS system uses X-rays to determine the chemical composition of molecules on the surface of a sample. The system is unique in the sense that it also has an extra X-ray source that can determine the chemical state below the surface, which was not possible in the past.  This will help us to dictate the position of defects in our phosphor materials that will consequently enable us to create better phosphor for solid state lighting as well as solar cell applications,” explains Prof Hendrik Swart, Senior Professor in the Department of Physics, who also holds the SARChI Chair in Solid State Luminescent and Advanced Materials.

After he had the opportunity to observe the system in the factory in Chigasaki, Kanagawa, Japan, where he attended a conference, Prof Swart was very impressed by its performance. He discussed it with Prof Koos Terblans, Head of the department, and other colleagues, and started making plans to buy the system. 

When the department first bought the X-ray photoelectron spectroscopy (XPS) system in 2007/2008, it became the national facility on XPS measurements. Not only is this an upgrade of the XPS system bought 14 years ago, but the new system will enable the department to do more measurements. “The number of samples that we have to handle has just become too much for one system. The new system’s increased capacity for making measurements addresses this challenge and it also gives UFS scientists and postgraduate students more time to spend on fundamental measurements to develop research of a higher level,” says Prof Swart.

(The Quantes XPS system. Photo:Supplied)

Explaining about the measurements, Prof Swart says: “This advanced X-ray photoelectron spectroscopy (XPS) instrument has the capability to analyse the very small area that the user is interested in and a large area of the uniform sample surface. The two different types of X-ray sources – the hard X-ray source and the more conventional soft X-ray source – can be switched automatically, allowing users to analyse the same area and/or points of a sample. The PHI Quantes XPS system ensures the availability of superior features such as automatic analysis, automatic sample transfer, turnkey charge neutralisation, and advanced data processing.”

“This XPS instrument is designed to pioneer new methods and applications transcending conventional ideas of what is possible.”

Optimising efficiency of materials

Prof Swart says the Department of Physics, especially the Research Chair in Advanced and Luminescent Materials, is developing new high-technology materials on a daily basis. “It is very important to know the chemical composition and defect distribution of the materials in order to add value to the fabrication of these materials,” he adds.

“The distribution of these defects is vital for the efficiency of the phosphor materials. If we know where these defects are located, we can determine the mechanisms of the light output coming from these phosphors,” describes Prof Swart.

Research conducted as part of the Research Chair in Solid State Luminescent and Advanced Materials will benefit significantly from this new system.

(Prof Koos Terblans, Head of the Department of Physics next to the Quantes XPS system. Photo:Supplied) 

“We are currently concentrating on phosphors as sensors (temperature), light-emitting diodes (LEDs), and solar cells, where we optimise the efficiency and durability of these materials. Any new knowledge, which I believe the PHI Quantes XPS system will provide us, will help us to reach our goal much quicker,” he says. 

Apart from the positive impact on research, the PHI Quantes XPS system will also be a benefit to society in the long term. Improved LEDs can be used to save electricity, and better solar cells can help to generate electricity, to mention but two examples. 

News Archive

Council on Higher Education LLB qualification review not yet complete
2017-05-16

The reaction from various stakeholders following the ‘Outcomes of the National Review of the LLB Qualification’ by the Council on Higher Education (CHE) on 12 April 2017 requires the CHE to clarify that the national review process has not been completed and is ongoing.

The peer-review process conducted under the auspices of the CHE is based on the LLB Standards Document which was developed in 2014-2015 with input from higher-education institutions and the organised legal profession. Following self-review and site visits by peers, the process is now at the point where commendations and shortcomings have been identified, and the statement of 12 April reflects those findings. All law faculties and schools have been asked to improve their LLB programmes to meet the LLB Standard, and no LLB programme has been de-accredited. All institutions retain the accreditation they had before the Review process began and all institutions are working towards retaining their accreditation and improving their LLB programmes.

The South African Law Deans’ Association (SALDA) has issued a set of responses regarding the LLB programme review. The following questions and answers were published to give more clarity on the questions raised.

1.    What is the effect of a finding of conditional accreditation?
The programme remains accredited.

(“Accreditation refers to a recognition status granted to a programme for a stipulated period of time after an HEQC evaluation indicates that it meets minimum standards of quality.”)

The institution must submit a progress report by 6 October 2017 that indicates how short-term aspects raised in the HEQC reports have been addressed and an improvement plan to indicate how longer-term aspects will be addressed.

2.    What is the effect of a finding of notice of withdrawal of accreditation?
The programme remains accredited.

The institution must submit an improvement plan by 6 October 2017 to indicate how the issues raised in the HEQC report will be addressed, including time frames.

3.    How does the finding of notice of withdrawal affect current students?
Students currently enrolled for the LLB programme at any institution are not affected at all. They will graduate with an accredited qualification.

4.    How does the finding of notice of withdrawal affect new applicants?
The programmes remain accredited and institutions may enrol new students as usual. This also includes students completing BA/BCom (Law) programmes who wish to continue with the LLB programme.

5.    How does the finding of notice of withdrawal affect prior graduates?
Degrees previously conferred are not affected.

6.    What happens when the improvement plans are submitted in October 2017?
The CHE will evaluate the plans when they are submitted, and the programmes remain accredited until a decision is taken whether the improvement plan is sufficient and has been fully given effect to or not. The institutions will have to submit progress reports to the CHE indicating implementation of measures contained in the improvement plan.

Should a decision at some stage be taken that a programme’s accreditation must be withdrawn, a teaching-out plan would be implemented so that all enrolled students would have the opportunity to graduate with an accredited degree.

For more information on the CHE’s pronouncement please contact Moleboheng Moshe-Bereng on MosheBerengMF@ufs.ac.za.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept