Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
27 July 2021 | Story Leonie Bolleurs | Photo UFS Photo Archive
Prof Hendrik Swart played a key role in the Department of Physics acquiring the PHI Quantes XPS system, the first in Africa and one of only 20 in the world.

The state-of-the-art equipment in the Department of Physics at the University of the Free State (UFS) differentiates this department from its competitors. Availability of the equipment makes it possible for researchers as well as students to deliver work that receives national and international recognition. 

Recently, the department acquired a PHI Quantes XPS system, the first in Africa and one of only 20 in the world. 

Creating better phosphor 

“The Quantes XPS system uses X-rays to determine the chemical composition of molecules on the surface of a sample. The system is unique in the sense that it also has an extra X-ray source that can determine the chemical state below the surface, which was not possible in the past.  This will help us to dictate the position of defects in our phosphor materials that will consequently enable us to create better phosphor for solid state lighting as well as solar cell applications,” explains Prof Hendrik Swart, Senior Professor in the Department of Physics, who also holds the SARChI Chair in Solid State Luminescent and Advanced Materials.

After he had the opportunity to observe the system in the factory in Chigasaki, Kanagawa, Japan, where he attended a conference, Prof Swart was very impressed by its performance. He discussed it with Prof Koos Terblans, Head of the department, and other colleagues, and started making plans to buy the system. 

When the department first bought the X-ray photoelectron spectroscopy (XPS) system in 2007/2008, it became the national facility on XPS measurements. Not only is this an upgrade of the XPS system bought 14 years ago, but the new system will enable the department to do more measurements. “The number of samples that we have to handle has just become too much for one system. The new system’s increased capacity for making measurements addresses this challenge and it also gives UFS scientists and postgraduate students more time to spend on fundamental measurements to develop research of a higher level,” says Prof Swart.

(The Quantes XPS system. Photo:Supplied)

Explaining about the measurements, Prof Swart says: “This advanced X-ray photoelectron spectroscopy (XPS) instrument has the capability to analyse the very small area that the user is interested in and a large area of the uniform sample surface. The two different types of X-ray sources – the hard X-ray source and the more conventional soft X-ray source – can be switched automatically, allowing users to analyse the same area and/or points of a sample. The PHI Quantes XPS system ensures the availability of superior features such as automatic analysis, automatic sample transfer, turnkey charge neutralisation, and advanced data processing.”

“This XPS instrument is designed to pioneer new methods and applications transcending conventional ideas of what is possible.”

Optimising efficiency of materials

Prof Swart says the Department of Physics, especially the Research Chair in Advanced and Luminescent Materials, is developing new high-technology materials on a daily basis. “It is very important to know the chemical composition and defect distribution of the materials in order to add value to the fabrication of these materials,” he adds.

“The distribution of these defects is vital for the efficiency of the phosphor materials. If we know where these defects are located, we can determine the mechanisms of the light output coming from these phosphors,” describes Prof Swart.

Research conducted as part of the Research Chair in Solid State Luminescent and Advanced Materials will benefit significantly from this new system.

(Prof Koos Terblans, Head of the Department of Physics next to the Quantes XPS system. Photo:Supplied) 

“We are currently concentrating on phosphors as sensors (temperature), light-emitting diodes (LEDs), and solar cells, where we optimise the efficiency and durability of these materials. Any new knowledge, which I believe the PHI Quantes XPS system will provide us, will help us to reach our goal much quicker,” he says. 

Apart from the positive impact on research, the PHI Quantes XPS system will also be a benefit to society in the long term. Improved LEDs can be used to save electricity, and better solar cells can help to generate electricity, to mention but two examples. 

News Archive

Universities can contribute to economic transformation
2010-01-27

At the lecture were, from the left: Prof. Neil Heideman (Acting Dean: Faculty of Natural and Agricultural Sciences), Prof. Hartmut Frank (University of Bayreuth, Germany), Prof. Bianchi and Prof. Jan van der Westhuizen (professor in Chemistry at the UFS).
Photo: Mangaliso Radebe 


Universities have a role to play in economic transformation and industrial development according to Prof. Fabrizio Bianchi, the Rector of the University of Ferrara in Italy.

This was the core message of his lecture on the topic Globalisation, Agriculture and Industrial Development that he delivered at the University of the Free State.

He said after the collapse of the agricultural industry in Italy as a result of the subsidies that the farmers were receiving from the government, the university had to step in.

“This was meant to maintain high prices and maximize the production but in the long run this approach created problems because the farmers were no longer producing high quality products but large quantities in order to receive subsidies,” he said.

“The result was that the government itself had to destroy those poor quality products. This was a completely unreasonable way to manage the economy”.

He said they had to abandon that approach and concentrate on quality because they realized that Italy could not match the prices and the quantity, in terms of production, of countries like China and the USA.

He said “knowledge and human resources” were the key factors that could get them out of that crisis; hence they came up with what he called “the Made in Italy approach”.

“We were working on the idea that food is part of culture and that it is not just simply for refueling the body,” he said.

“One of the fundamental ideas was to come back to the idea that production is the centre of the development process.”

“Quality is a very complex, collective issue,” he said. “You cannot understand development if you do not understand that you have to base it on strong roots”.

This approach resulted in the formation of several companies with specialized niche markets producing high quality products.

His visit to the UFS coincided with that of the 1991 Nobel Laureate in Chemistry, Prof. Richard Ernst from Switzerland, who was also part of the fourth presentation of the Cheese fondue concept.

The main thrust of this concept is that technical advances alone are insufficient for an agreement to be reached on the minimum respect between the various groups and individuals within a society. It proposes that for this to be achieved there has to be a concurrent development of empathy and emotional synergy.

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
27 January 2010

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept