Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
27 July 2021 | Story Leonie Bolleurs | Photo UFS Photo Archive
Prof Hendrik Swart played a key role in the Department of Physics acquiring the PHI Quantes XPS system, the first in Africa and one of only 20 in the world.

The state-of-the-art equipment in the Department of Physics at the University of the Free State (UFS) differentiates this department from its competitors. Availability of the equipment makes it possible for researchers as well as students to deliver work that receives national and international recognition. 

Recently, the department acquired a PHI Quantes XPS system, the first in Africa and one of only 20 in the world. 

Creating better phosphor 

“The Quantes XPS system uses X-rays to determine the chemical composition of molecules on the surface of a sample. The system is unique in the sense that it also has an extra X-ray source that can determine the chemical state below the surface, which was not possible in the past.  This will help us to dictate the position of defects in our phosphor materials that will consequently enable us to create better phosphor for solid state lighting as well as solar cell applications,” explains Prof Hendrik Swart, Senior Professor in the Department of Physics, who also holds the SARChI Chair in Solid State Luminescent and Advanced Materials.

After he had the opportunity to observe the system in the factory in Chigasaki, Kanagawa, Japan, where he attended a conference, Prof Swart was very impressed by its performance. He discussed it with Prof Koos Terblans, Head of the department, and other colleagues, and started making plans to buy the system. 

When the department first bought the X-ray photoelectron spectroscopy (XPS) system in 2007/2008, it became the national facility on XPS measurements. Not only is this an upgrade of the XPS system bought 14 years ago, but the new system will enable the department to do more measurements. “The number of samples that we have to handle has just become too much for one system. The new system’s increased capacity for making measurements addresses this challenge and it also gives UFS scientists and postgraduate students more time to spend on fundamental measurements to develop research of a higher level,” says Prof Swart.

(The Quantes XPS system. Photo:Supplied)

Explaining about the measurements, Prof Swart says: “This advanced X-ray photoelectron spectroscopy (XPS) instrument has the capability to analyse the very small area that the user is interested in and a large area of the uniform sample surface. The two different types of X-ray sources – the hard X-ray source and the more conventional soft X-ray source – can be switched automatically, allowing users to analyse the same area and/or points of a sample. The PHI Quantes XPS system ensures the availability of superior features such as automatic analysis, automatic sample transfer, turnkey charge neutralisation, and advanced data processing.”

“This XPS instrument is designed to pioneer new methods and applications transcending conventional ideas of what is possible.”

Optimising efficiency of materials

Prof Swart says the Department of Physics, especially the Research Chair in Advanced and Luminescent Materials, is developing new high-technology materials on a daily basis. “It is very important to know the chemical composition and defect distribution of the materials in order to add value to the fabrication of these materials,” he adds.

“The distribution of these defects is vital for the efficiency of the phosphor materials. If we know where these defects are located, we can determine the mechanisms of the light output coming from these phosphors,” describes Prof Swart.

Research conducted as part of the Research Chair in Solid State Luminescent and Advanced Materials will benefit significantly from this new system.

(Prof Koos Terblans, Head of the Department of Physics next to the Quantes XPS system. Photo:Supplied) 

“We are currently concentrating on phosphors as sensors (temperature), light-emitting diodes (LEDs), and solar cells, where we optimise the efficiency and durability of these materials. Any new knowledge, which I believe the PHI Quantes XPS system will provide us, will help us to reach our goal much quicker,” he says. 

Apart from the positive impact on research, the PHI Quantes XPS system will also be a benefit to society in the long term. Improved LEDs can be used to save electricity, and better solar cells can help to generate electricity, to mention but two examples. 

News Archive

Want to make a difference in the world? Here is how.
2016-05-13

Video
Student Bursary Fund Campaign booklet (pdf)
Donate
Student Bursary Fund Campaign launched: #FundAFuture and make a difference
Motho ke motho ka batho. A person is a person through others

 

We live in a world filled with want. Often, we ache to make a difference, but become overwhelmed and despondent when we look into this chasm of need. However, the University of the Free State (UFS) has created a way for each of us to change lives, in much the same way that the life of Nozi Bonje has been changed.

“Through the opportunities given to me, I realised that you don’t have to be defined by the school you went to. You can do so much more – and you can dream big dreams and realise them.”

Then
The early chapters of Nozi’s life story reveal a shy girl, hiding between the pages of her books on the playground of a township school. With barely a whisper, Nozi was slipping into a desolate future where dreams existed only in sleep.

Now

Today, that timid young girl has grown into a woman who throws her head back in effortless laughter, confidence sparking off her in bright arcs. What changed the trajectory of her future? Financial support for a tertiary education altered Nozi’s life permanently.

“If I didn’t go to university, I would have been this sad little person,” she remarks. “Studying is not just about learning from a textbook, though. It also challenges you to think critically. You start seeing things in a different perspective, and respond differently.”

Description: Nozi_FundAFuture Tags: Nozi_FundAFuture

Nozi Bonje
Photo: Sonia Small

Giving back
Funding enabled Nozi to obtain a BSc degree in Human Molecular Biology at the UFS in 2015. She was one of the top students in her class. Inspired and driven, she is currently pursuing an honours degree in Molecular Genetics, also at the UFS.

“My main dream is to make a difference in people’s lives. For me, it’s all about giving back, because so many people helped me throughout my journey.”

Student Bursary Fund Campaign

In order to help increase the number of lives transformed through higher education – such as Nozi’s – the UFS has established the Student Bursary Fund Campaign. This campaign aims to raise money to fund talented, deserving students who lack the financial means of obtaining a university degree. We cannot do this alone, though.

Your support is crucial.

Each contribution will bring us closer to our goal while changing the future of our youth. Visit our Giving page for ways to donate.

 


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept