Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
27 July 2021 | Story Leonie Bolleurs | Photo UFS Photo Archive
Prof Hendrik Swart played a key role in the Department of Physics acquiring the PHI Quantes XPS system, the first in Africa and one of only 20 in the world.

The state-of-the-art equipment in the Department of Physics at the University of the Free State (UFS) differentiates this department from its competitors. Availability of the equipment makes it possible for researchers as well as students to deliver work that receives national and international recognition. 

Recently, the department acquired a PHI Quantes XPS system, the first in Africa and one of only 20 in the world. 

Creating better phosphor 

“The Quantes XPS system uses X-rays to determine the chemical composition of molecules on the surface of a sample. The system is unique in the sense that it also has an extra X-ray source that can determine the chemical state below the surface, which was not possible in the past.  This will help us to dictate the position of defects in our phosphor materials that will consequently enable us to create better phosphor for solid state lighting as well as solar cell applications,” explains Prof Hendrik Swart, Senior Professor in the Department of Physics, who also holds the SARChI Chair in Solid State Luminescent and Advanced Materials.

After he had the opportunity to observe the system in the factory in Chigasaki, Kanagawa, Japan, where he attended a conference, Prof Swart was very impressed by its performance. He discussed it with Prof Koos Terblans, Head of the department, and other colleagues, and started making plans to buy the system. 

When the department first bought the X-ray photoelectron spectroscopy (XPS) system in 2007/2008, it became the national facility on XPS measurements. Not only is this an upgrade of the XPS system bought 14 years ago, but the new system will enable the department to do more measurements. “The number of samples that we have to handle has just become too much for one system. The new system’s increased capacity for making measurements addresses this challenge and it also gives UFS scientists and postgraduate students more time to spend on fundamental measurements to develop research of a higher level,” says Prof Swart.

(The Quantes XPS system. Photo:Supplied)

Explaining about the measurements, Prof Swart says: “This advanced X-ray photoelectron spectroscopy (XPS) instrument has the capability to analyse the very small area that the user is interested in and a large area of the uniform sample surface. The two different types of X-ray sources – the hard X-ray source and the more conventional soft X-ray source – can be switched automatically, allowing users to analyse the same area and/or points of a sample. The PHI Quantes XPS system ensures the availability of superior features such as automatic analysis, automatic sample transfer, turnkey charge neutralisation, and advanced data processing.”

“This XPS instrument is designed to pioneer new methods and applications transcending conventional ideas of what is possible.”

Optimising efficiency of materials

Prof Swart says the Department of Physics, especially the Research Chair in Advanced and Luminescent Materials, is developing new high-technology materials on a daily basis. “It is very important to know the chemical composition and defect distribution of the materials in order to add value to the fabrication of these materials,” he adds.

“The distribution of these defects is vital for the efficiency of the phosphor materials. If we know where these defects are located, we can determine the mechanisms of the light output coming from these phosphors,” describes Prof Swart.

Research conducted as part of the Research Chair in Solid State Luminescent and Advanced Materials will benefit significantly from this new system.

(Prof Koos Terblans, Head of the Department of Physics next to the Quantes XPS system. Photo:Supplied) 

“We are currently concentrating on phosphors as sensors (temperature), light-emitting diodes (LEDs), and solar cells, where we optimise the efficiency and durability of these materials. Any new knowledge, which I believe the PHI Quantes XPS system will provide us, will help us to reach our goal much quicker,” he says. 

Apart from the positive impact on research, the PHI Quantes XPS system will also be a benefit to society in the long term. Improved LEDs can be used to save electricity, and better solar cells can help to generate electricity, to mention but two examples. 

News Archive

Service learning teaching strategy essential for the infusion of graduate attributes
2017-01-02

Description: Dr Pulane Pitso Tags: Dr Pulane Pitso 

Dr Pulane Pitso, Director: Institutional Performance
Monitoring within Performance Monitoring and Evaluation
Branch in the Department of the Premier, Free State
Provincial Government (FSPG).
Photo: Rulanzen Martin

“Public service delivery is not only about ‘government’s sector end products’, but is also fundamentally related to the ways in which the citizens can be best served at the point of client interface, as the primary beneficiaries.”

It is against this backdrop that Dr Pulane Pitso’s study explored the role of Higher Education Institutions (HEIs) in infusing the curriculum with graduate attributes for improved service delivery. The study is entitled: Community service learning as a transformative tool for infusing the university curriculum with graduate attributes for improved service delivery.
 
Citizens the central focus in public-service delivery
Although with the advent of democracy, the South African public service introduced the Batho Pele “people first” initiative which is one of the key transformation-oriented initiatives to ensure that citizens are the central focus in public service  delivery. An extant literature indicates that more work by the government still needs to be done in terms of the institutionalisation and implementation thereof.

Notwithstanding that public service is primarily responsible for addressing challenges related to poor service delivery, Dr Pitso moved from a premise that a multifaceted and collaborative approach, underpinned by a concerted effort by all relevant sectors, is more likely to contribute significantly towards improving service delivery. Specific focus was given to sectors primarily mandated to lay foundations through training and development such as HEIs, since the nature and quality of public service largely depends on the nature, quality and relevance of the system of education.

CSL a transformative teaching strategy
The basis for her thesis, emanated from the contention that public service delivery is a dynamic process which cultivates into a citizen-government relationship.

“It is this relationship that makes the implementation of the Batho Pele initiative crucial in ensuring that the social fabric and moral character of government is not compromised, thus the sustainability and facilitation of the emerged relationship,” Dr Pitso says.

The study focuses on the notion of community service learning (CSL) as an increasingly recognised transformative teaching strategy. It transcends lecture halls and utilises communities as educational spaces to provide practical exposure to real-life experiences to students on both learning and serving the communities.

Instilling graduate attributes in students
Dr Pitso’s thesis, which was predominately qualitative in nature, comprised two main stages. The first stage of the study focused on determining the current state of the public service in terms of the implementation of the Batho Pele principles. Whereas with the second stage, the focus was on determining the extent to which the graduate attributes are instilled in students by means of an exit-level CSL module at the UFS.

Dr Pitso’s thesis, which was awarded to her on 30 June 2016, is the product of five years of hard work, commitment and perseverance. She said it would not have been realised if it had not been for the leadership and mentorship of her promoter, Prof Mabel Erasmus, and co-promoter, Prof Victor Teise.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept