Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
27 July 2021 | Story Leonie Bolleurs | Photo UFS Photo Archive
Prof Hendrik Swart played a key role in the Department of Physics acquiring the PHI Quantes XPS system, the first in Africa and one of only 20 in the world.

The state-of-the-art equipment in the Department of Physics at the University of the Free State (UFS) differentiates this department from its competitors. Availability of the equipment makes it possible for researchers as well as students to deliver work that receives national and international recognition. 

Recently, the department acquired a PHI Quantes XPS system, the first in Africa and one of only 20 in the world. 

Creating better phosphor 

“The Quantes XPS system uses X-rays to determine the chemical composition of molecules on the surface of a sample. The system is unique in the sense that it also has an extra X-ray source that can determine the chemical state below the surface, which was not possible in the past.  This will help us to dictate the position of defects in our phosphor materials that will consequently enable us to create better phosphor for solid state lighting as well as solar cell applications,” explains Prof Hendrik Swart, Senior Professor in the Department of Physics, who also holds the SARChI Chair in Solid State Luminescent and Advanced Materials.

After he had the opportunity to observe the system in the factory in Chigasaki, Kanagawa, Japan, where he attended a conference, Prof Swart was very impressed by its performance. He discussed it with Prof Koos Terblans, Head of the department, and other colleagues, and started making plans to buy the system. 

When the department first bought the X-ray photoelectron spectroscopy (XPS) system in 2007/2008, it became the national facility on XPS measurements. Not only is this an upgrade of the XPS system bought 14 years ago, but the new system will enable the department to do more measurements. “The number of samples that we have to handle has just become too much for one system. The new system’s increased capacity for making measurements addresses this challenge and it also gives UFS scientists and postgraduate students more time to spend on fundamental measurements to develop research of a higher level,” says Prof Swart.

(The Quantes XPS system. Photo:Supplied)

Explaining about the measurements, Prof Swart says: “This advanced X-ray photoelectron spectroscopy (XPS) instrument has the capability to analyse the very small area that the user is interested in and a large area of the uniform sample surface. The two different types of X-ray sources – the hard X-ray source and the more conventional soft X-ray source – can be switched automatically, allowing users to analyse the same area and/or points of a sample. The PHI Quantes XPS system ensures the availability of superior features such as automatic analysis, automatic sample transfer, turnkey charge neutralisation, and advanced data processing.”

“This XPS instrument is designed to pioneer new methods and applications transcending conventional ideas of what is possible.”

Optimising efficiency of materials

Prof Swart says the Department of Physics, especially the Research Chair in Advanced and Luminescent Materials, is developing new high-technology materials on a daily basis. “It is very important to know the chemical composition and defect distribution of the materials in order to add value to the fabrication of these materials,” he adds.

“The distribution of these defects is vital for the efficiency of the phosphor materials. If we know where these defects are located, we can determine the mechanisms of the light output coming from these phosphors,” describes Prof Swart.

Research conducted as part of the Research Chair in Solid State Luminescent and Advanced Materials will benefit significantly from this new system.

(Prof Koos Terblans, Head of the Department of Physics next to the Quantes XPS system. Photo:Supplied) 

“We are currently concentrating on phosphors as sensors (temperature), light-emitting diodes (LEDs), and solar cells, where we optimise the efficiency and durability of these materials. Any new knowledge, which I believe the PHI Quantes XPS system will provide us, will help us to reach our goal much quicker,” he says. 

Apart from the positive impact on research, the PHI Quantes XPS system will also be a benefit to society in the long term. Improved LEDs can be used to save electricity, and better solar cells can help to generate electricity, to mention but two examples. 

News Archive

Great turnout for Hannes Meyer Symposium in Cardiothoracic Surgery
2017-05-05

Description: Hannes Meyer Symposium  Tags: Hannes Meyer Symposium

Symposium attendees watch attentively as
Dr Johan Brink demonstrated a MAZE procedure
with a pig’s heart.
Photo: Supplied

The University of the Free State’s Faculty of Health Sciences hosted the annual Hannes Meyer Symposium in Cardiothoracic Surgery. The symposium was organised by Prof Francis Smit, head of the department of Cardiothoracic Surgery at the UFS, with the support from the Society of Cardiothoracic Surgeons of South Africa and the European Association of Cardiothoracic Surgery (EACTS). Over the past 16 years this symposium has steadily been growing in stature and prestige leading to the resounding success that was this year’s event.

Medical advancements explored
The aim of the symposium is to provide an overview of the latest advances in Cardiothoracic Surgery and perfusion as well as providing hands-on training via simulation to trainees from South Africa and the rest of the African continent. Didactic lectures and papers by registrars were an integral component of the symposium. The South African community was represented by various heads of departments, trainees, senior specialists and perfusionists from all the training centres in the country. There were also delegates representing Uganda, Mozambique, Nigeria and Zambia.

Heart surgery off to new heights
Simulation in Cardiothoracic Surgery and Perfusion can be compared to airline pilots with high risk, with complex surgeries being first done in simulators before being attempted in the real world. The UFS is proud to have a state-of-the-art simulation facility, which was used to facilitate the programme.

The range of simulation was extensive and included simple procedural models to complex full theatre setups with Human Performance Models in perfusion that simulated crisis scenarios with the aid of computerised devices that react in real time to human intervention.

Industry support highly appreciated
This event was coordinated by Dr Jehron Pillay, senior registrar in the Department of Cardiothoracic Surgery and Marilee Janse van Vuuren, deputy-director clinical technology, in the department. This was the first time that such extensive simulation models were used in the programme and judging from the positive response received, it has certainly set the benchmark for all future events.

The event has received invaluable support over the years from EACTS that has selected Bloemfontein as the site of its African training programme as a result of the high level of training and education achieved here.

The academic discussions were chaired by Profs Marko Turina and Jose Pomar (past presidents of EACTS) and Pieter Kappetein (past secretary general of EACTS) who are extremely well known internationally for their contribution to advancing Cardiothoracic training and education.

Our guests from EACTS presented didactical lectures on research methodology, international randomised trials and discussed recent developments and controversies in cardiothoracic surgery.

Registrars from all South African units presented a thoracic and cardiac surgery paper from each unit highlighting specific disease conditions, moderated by heads of departments and the international panel.

An event of this magnitude requires significant financial support and the medical industry in South Africa stepped up to the plate in providing financial and logistical support in order to make it possible.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept