Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
30 June 2021 | Story Dr Nitha Ramnath
Dr Charlene Marais, Prof Vladimir Azov and Prof Ulrich Hennecke

The Department of Chemistry at the University of the Free State (UFS) held a successful online International Symposium on Organic Chemistry on 15 June 2021. The symposium brought together scientists from several South African and foreign universities and created a virtual platform for a long-awaited discussion stalled by the COVID-19 pandemic. About 20 participants from universities in South Africa, Belgium, and Germany presented their lectures during the symposium. In addition, this symposium was directed at the postgraduate students in the Department of Chemistry at the UFS, allowing them to present their results to an international audience and to foster their engagement in scientific research.

For more than a year, the COVID-19 pandemic has prevented the common personal communication avenues for the researchers: face-to-face (F2F) conferences, symposia, and workshops. To bridge this gap, Prof Vladimir Azov and Dr Charlene Marais from the Department of Chemistry organised the online meeting for the researchers from the UFS and several other local and foreign universities, all working in the field of organic chemistry.

Online material from the International Symposium on Organic Chemistry is available at here

Collaborative project between the UFS and VUB towards the development of gel-based drug release systems

The symposium also served as a long-awaited inception meeting for the collaborative project between the Organic Chemistry group at the UFS and the Organic Chemistry (ORGC) group at the Vrije Universiteit Brussel (VUB). This project is jointly funded by the National Research Foundation (NRF) and FWO (Research Foundation – Flanders); it is aimed at the development of new peptide-based materials with properties controllable by precisely tuned interactions of unnatural amino acids included in the peptide sequence. Such peptides can, for example, be used as smart materials for precisely controllable drug release. The South African team members, directed by Prof Vladimir Azov, will specialise in the development of the new amino acid building blocks, whereas the VUB team, headed by Prof Ulrich Hennecke, will focus on peptide preparation and studies on their properties.

This kick-off meeting was initially planned as a F2F event in June 2020 but was delayed due to the COVID-19 travelling restrictions and finally migrated to a virtual space. This provided an opportunity to present the project proposals and to discuss the initial results in a much broader circle than would have been possible within the common F2F meeting framework.

News Archive

Mineral named after UFS professor
2017-09-29

Description: Mineral tredoux Tags: International Mineralogical Association, tredouxite, Prof Marian Tredoux, Department of Geology, Barberton 

Tredouxite (white) intergrown with bottinoite (light grey),
a complex hydrous alteration product. The large host
minerals are nickel-rich silicate (grey), maybe willemseite,
and the spinel trevorite (dark grey).


More than five thousand minerals have been certified by the International Mineralogical Association (IMA). One of these minerals, tredouxite, was recently named after an academic at the University of the Free State (UFS). 

Tredouxite was named after Prof Marian Tredoux, an associate professor in the Department of Geology, to acknowledge her close to 30 years’ commitment to figuring out the geological history of the rock in which this mineral occurs. The name was chosen by the team which identified the new mineral, consisting of Dr Federica Zaccarini and Prof. Giorgio Garuti from the University of Leoben, Austria, Prof. Luca Bindi from the University of Florence, Italy, and Prof. Duncan Miller from the UFS. 

They found the mineral in the abovementioned rock from the Barberton region in Mpumalanga, in May 2017.

In the past, a mineral was also named after Marie Curie
With the exception of a few historical (pre-1800) names, a mineral is typically named either after the area where it was first found, or after its chemical composition or physical properties, or after a person. If named after a person, it has to be someone who had nothing to do with finding the mineral.

Prof Tredoux said: “As of 19 September 2017, 5292 minerals had been certified by IMA. Of these, 81 were named after women, either singly or with a near relation. Marie Curie is named twice: sklodowskite (herself) and curite (plus husband). Most of the named women are Russian geoscientists.”

Another way to assess the rarity of such a naming is to consider that fewer than 700 minerals have been named after people. Given that there are by now seven billion people on the planet, it means that a person who is granted a mineral name becomes one in 10 million of the people alive today to be honoured in such a way. To date, over a dozen minerals had been named after South Africans, three of them after women (including tredouxite).

It contains nickel, antimony and oxygen
The chemical composition of tredouxite is NiSb2O6 (nickel antimony oxide). This makes it the nickel equivalent of the magnesium mineral bystromite (MgSb2O6), described in the 1950s from the La Fortuna antimony mine in Mexico.  

“This announcement is of great academic importance: the discovery by the Italian team of a phase with that specific chemical composition will undoubtedly help me and my co-workers to better understand the origin of the rock itself,” she said. She also expressed the hope that it may raise interest in the Department of Geology and the UFS as a whole, by highlighting that world-class research is being done at the department. 

The announcement of this new mineral was published on the International Mineralogical Association Commission on New Minerals, Nomenclature and Classification website, the Mineralogical Magazine and the European Journal of Mineralogy.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept