Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
30 June 2021 | Story Dr Nitha Ramnath
Dr Charlene Marais, Prof Vladimir Azov and Prof Ulrich Hennecke

The Department of Chemistry at the University of the Free State (UFS) held a successful online International Symposium on Organic Chemistry on 15 June 2021. The symposium brought together scientists from several South African and foreign universities and created a virtual platform for a long-awaited discussion stalled by the COVID-19 pandemic. About 20 participants from universities in South Africa, Belgium, and Germany presented their lectures during the symposium. In addition, this symposium was directed at the postgraduate students in the Department of Chemistry at the UFS, allowing them to present their results to an international audience and to foster their engagement in scientific research.

For more than a year, the COVID-19 pandemic has prevented the common personal communication avenues for the researchers: face-to-face (F2F) conferences, symposia, and workshops. To bridge this gap, Prof Vladimir Azov and Dr Charlene Marais from the Department of Chemistry organised the online meeting for the researchers from the UFS and several other local and foreign universities, all working in the field of organic chemistry.

Online material from the International Symposium on Organic Chemistry is available at here

Collaborative project between the UFS and VUB towards the development of gel-based drug release systems

The symposium also served as a long-awaited inception meeting for the collaborative project between the Organic Chemistry group at the UFS and the Organic Chemistry (ORGC) group at the Vrije Universiteit Brussel (VUB). This project is jointly funded by the National Research Foundation (NRF) and FWO (Research Foundation – Flanders); it is aimed at the development of new peptide-based materials with properties controllable by precisely tuned interactions of unnatural amino acids included in the peptide sequence. Such peptides can, for example, be used as smart materials for precisely controllable drug release. The South African team members, directed by Prof Vladimir Azov, will specialise in the development of the new amino acid building blocks, whereas the VUB team, headed by Prof Ulrich Hennecke, will focus on peptide preparation and studies on their properties.

This kick-off meeting was initially planned as a F2F event in June 2020 but was delayed due to the COVID-19 travelling restrictions and finally migrated to a virtual space. This provided an opportunity to present the project proposals and to discuss the initial results in a much broader circle than would have been possible within the common F2F meeting framework.

News Archive

Is milk really so well-known, asks UFS’s Prof. Osthoff
2011-03-17

Prof. Garry Osthoff
Photo: Stephen Collett

Prof. Garry Osthoff opened a whole new world of milk to the audience in his inaugural lecture, Milk: the well-known (?) food, in our Department of Microbial, Biochemical and Food Biotechnology of the Faculty of Natural and Agricultural Sciences.

Prof. Osthoff has done his research in protein chemistry, immuno-chemistry and enzymology at the Council for Scientific and Industrial Research (CSIR) in Pretoria and post-doctoral research at the Bowman-Grey School of Medicine, North Carolina, USA. That was instrumental in establishing food chemistry at the university.
 
He is involved in chemical aspects of food, with a focus on dairy science and technology. He is also involved in the research of cheese processing as well as milk evolution and concentrated on milk evolution in his lecture. Knowledge of milk from dairy animals alone does not provide all the explanations of milk as food.
 
Some aspects he highlighted in his lecture were that milk is the first food to be utilised by young mammals and that it is custom-designed for each species. “However, mankind is an opportunist and has found ways of easy access to food by the practice of agriculture, where plants as well as animals were employed or rather exploited,” he said.
 
The cow is the best-known milk producer, but environmental conditions forced man to select other animals. In spite of breeding selection, cattle seem not to have adapted to the most extreme conditions such as high altitudes with sub-freezing temperatures, deserts and marshes.
 
Prof. Osthoff said the consumption of the milk as an adult is not natural; neither is the consumption of milk across species. This practice of mankind may often have consequences, when signs of malnutrition or diseases are noticed. Two common problems are an allergy to milk and lactose intolerance.
 
Allergies are normally the result of an immune response of the consumer to the foreign proteins found in the milk. In some cases it might help to switch from one milk source to another, such as switching from cow’s milk to goat’s milk.
 
Prof. Osthoff said lactose intolerance – the inability of adult humans to digest lactose, the milk sugar – is natural, as adults lose that ability to digest lactose. The symptoms of the condition are stomach cramps and diarrhoea. This problem is mainly found in the warmer climates of the world. This could be an indication of early passive development of dairy technology. In these regions milk could not be stored in its fresh form, but in a fermented form, in which case the lactose was pre-digested by micro-organisms, and the human population never adapted to digesting lactose in adulthood.
 
According to Prof. Osthoff, it is basically the lactose in milk that has spurred dairy technology. Its fermentation has resulted in the development of yoghurts and all the cheeses that we know. In turn, the intolerance to lactose has spurred a further technological solution: lactose-free milk is currently produced by pre-digestion of lactose with enzymes.
 
It was realised that the milks and products from different species differed in quality aspects such as keeping properties and taste. It was also realised that the nutritional properties differed as well as their effects on health. One example is the mentioned allergy against cow’s milk proteins, which may be solved by the consumption of goat’s milk. The nutritional benefits and technological processing of milk aroused an interest in more information, and it was realised that the information gained from human milk and that of the few domesticated species do not provide a complete explanation of the properties of milk as food. Of the 250 species of milk which have been studied, only the milk of humans and a few domesticated dairy animals has been studied in detail.

Media Release
15 March 2011
Issued by: Lacea Loader
Director: Strategic Communication
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: news@ufs.ac.za

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept