Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
30 June 2021 | Story Dr Nitha Ramnath
Dr Charlene Marais, Prof Vladimir Azov and Prof Ulrich Hennecke

The Department of Chemistry at the University of the Free State (UFS) held a successful online International Symposium on Organic Chemistry on 15 June 2021. The symposium brought together scientists from several South African and foreign universities and created a virtual platform for a long-awaited discussion stalled by the COVID-19 pandemic. About 20 participants from universities in South Africa, Belgium, and Germany presented their lectures during the symposium. In addition, this symposium was directed at the postgraduate students in the Department of Chemistry at the UFS, allowing them to present their results to an international audience and to foster their engagement in scientific research.

For more than a year, the COVID-19 pandemic has prevented the common personal communication avenues for the researchers: face-to-face (F2F) conferences, symposia, and workshops. To bridge this gap, Prof Vladimir Azov and Dr Charlene Marais from the Department of Chemistry organised the online meeting for the researchers from the UFS and several other local and foreign universities, all working in the field of organic chemistry.

Online material from the International Symposium on Organic Chemistry is available at here

Collaborative project between the UFS and VUB towards the development of gel-based drug release systems

The symposium also served as a long-awaited inception meeting for the collaborative project between the Organic Chemistry group at the UFS and the Organic Chemistry (ORGC) group at the Vrije Universiteit Brussel (VUB). This project is jointly funded by the National Research Foundation (NRF) and FWO (Research Foundation – Flanders); it is aimed at the development of new peptide-based materials with properties controllable by precisely tuned interactions of unnatural amino acids included in the peptide sequence. Such peptides can, for example, be used as smart materials for precisely controllable drug release. The South African team members, directed by Prof Vladimir Azov, will specialise in the development of the new amino acid building blocks, whereas the VUB team, headed by Prof Ulrich Hennecke, will focus on peptide preparation and studies on their properties.

This kick-off meeting was initially planned as a F2F event in June 2020 but was delayed due to the COVID-19 travelling restrictions and finally migrated to a virtual space. This provided an opportunity to present the project proposals and to discuss the initial results in a much broader circle than would have been possible within the common F2F meeting framework.

News Archive

Water erosion research help determine future of dams
2017-03-07

Description: Dr Jay le Roux Tags: Dr Jay le Roux

Dr Jay le Roux, one of 31 new NRF-rated
researchers at the University of the Free State,
aims for a higher rating from the NRF.
Photo: Rulanzen Martin

“This rating will motivate me to do more research, to improve outcomes, and to aim for a higher C-rating.” This was the response of Dr Jay le Roux, who was recently graded as an Y2-rated researcher by the National Research Foundation (NRF).

Dr Le Roux, senior lecturer in the Department of Geography at the University of the Free State (UFS), is one of 31 new NRF-rated researchers at the UFS. “This grading will make it possible to focus on more specific research during field research and to come in contact with other experts. Researchers are graded on their potential or contribution in their respective fields,” he said.

Research assess different techniques
His research on water erosion risk in South Africa (SA) is a methodological framework with three hierarchal levels presented. It was done in collaboration with the University of Pretoria (UP), Water Research Commission, Department of Agriculture, Forestry and Fisheries, and recently Rhodes University and the Department of Environmental Affairs. Dr Le Roux was registered for 5 years at UP, while working full-time for the Agricultural Research Council – Institute for Soil, Climate and Water (ARC-ISCW).

Water erosion risk assessment in South Africa: towards a methodological framework
, illustrates the most feasible erosion assessment techniques and input datasets that can be used to map water erosion features in SA. It also emphasises the simplicity required for application at a regional scale, with proper incorporation of the most important erosion-causal factors.

The main feature that distinguishes this approach from previous studies is the fact that this study interprets erosion features as individual sediment sources. Modelling the sediment yield contribution from gully erosion (also known as dongas) with emphasis on connectivity and sediment transport, can be considered as an important step towards the assessment of sediment produce at regional scale. 
 
Dams a pivotal element in river networks

Soil is an important, but limited natural resource in SA. Soil erosion not only involves loss of fertile topsoil and reduction of soil productivity, but is also coupled with serious off-site impacts related to increased mobilisation of sediment and delivery to rivers.

The siltation of dams is a big problem in SA, especially dams that are located in eroded catchment areas. Dr Le Roux recently developed a model to assess sediment yield contribution from gully erosion at a large catchment scale. “The Mzimvubu River Catchment is the only large river network in SA on record without a dam.” The flow and sediment yield in the catchment made it possible to estimate dam life expectancies on between 43 and 55 years for future dams in the area.
 
Future model to assess soil erosion
“I plan to finalise a soil erosion model that will determine the sediment yield of gully erosion on a bigger scale.” It will be useful to determine the lifespan of dams where gully erosion is a big problem. Two of his PhD students are currently working on project proposals to assess soil erosion with the help of remote sensing techniques.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept