Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
30 June 2021 | Story André Damons | Photo André Damons
Dr Nicholas Pearce, Head of the COVID-19 Task Team at the Universitas Academic Hospital, leads a dedicated team of professionals at the testing and vaccination site of the Universitas Academic Hospital, adjacent to our Bloemfontein Campus.

It is impossible to quantify the number of hours Dr Nicholas Pearce, Head of the COVID-19 Task Team for the Universitas Academic Hospital, spent working in response to this deadly virus since the first case was reported in South Africa last year. 

According to Dr Pearce, who is the Head of the Department of General Surgery in the Faculty of Health Sciences at the University of the Free State (UFS), the initial preparation phase required many hours of brainstorming, planning, and physical hours working on site. He also spent countless hours awake at night trying to come up with solutions for the many challenges faced along the way. This is in addition to being available telephonically twenty-four-seven for any issues related to equipment, staffing, and facilities.

“I was attending a vascular surgery congress in Germany last year January (2020) when China just announced the outbreak of COVID-19. I noticed an increased number of travellers wearing surgical masks at an airport in the Middle East when I was travelling to South Africa. 

“Upon my return to work, I approached management to discuss procurement of PPEs, as it was just a matter of time before COVID-19 would hit South Africa and the rest of the world. When things escalated, I was asked to head the COVID-19 response team at Universitas Hospital,” explains Dr Pearce.

Kind human being with a soft heart

(Photo: André Damons)

Dr Pearce, who was brought up to always strive to be better, is driven and motivated to succeed. He has a very analytical brain and loves challenges. In fact, he does not believe in problems and only sees challenges. This kind human being can sometimes seem quite tough on the outside, but actually has a very soft heart. 

“I think it is human nature to want to feel needed. I have an inherent urge to help my fellow human beings. This is also the reason why I became a health-care professional and why I am passionate about teaching,” says Dr Pearce. 

With South Africa lagging behind with its vaccination programme, the hard work is far from over for Dr Pearce and his team. Says Dr Pearce: “The initiation of a mass vaccination site posed a whole new set of challenges, which once again required many hours of planning. The initial stages of running the vaccination site required many hours of physical hard work a day. Then there is also the daily operations meeting at 18:00 every weekday to discuss the vaccine roll-out in the province.”

Frustrations and setbacks

For Dr Pearce, this pandemic highlighted the differences between individuals from different social classes in our country. Providing quarantine and self-isolation facilities for individuals who do not have access to such facilities at home is one such example. 

“We all have a right to clean water and good quality healthcare. This also includes a right to oxygen. This right to oxygen has proved to be one of our great challenges in managing this pandemic. Delivery of these large amounts of oxygen has been especially challenging. Some days we require in excess of five tons of oxygen,” says Dr Pearce. 

(Photo: André Damons)


There have been many frustrations and setbacks on this journey, some of which can be quite demoralising and demotivating, but knowing that he is doing something good for his fellow human beings gives this gentle and diligent healthcare worker a tremendous amount of energy. “Positive feedback from patients and colleagues far outshines all the frustrations and disappointments,” concludes Dr Pearce. 


Outside of work

After finishing online meetings at home, Dr Pearce relaxes with his partner by chatting about the day’s events and cooking supper together while enjoying a glass of wine. He also tries to connect with family who lives in Gauteng. Because of work pressures and the pandemic, he has not been able to see them as much. 

News Archive

#Women'sMonth: Save the children
2017-08-10

Description: Trudi O'Neill Tags: : rotaviruses, young children, Dr Trudi O’Neill, Department of Microbial, Biochemical and Food Biotechnology, vaccine 

Dr Trudi O’Neill, Senior lecturer in the Department of
Microbial, Biochemical and Food Biotechnology.
Photo: Anja Aucamp

Dr Trudi O’Neill, Senior lecturer in the Department of Microbial, Biochemical and Food Biotechnology, is conducting research on rotavirus vaccines.

Dr O’Neill was inspired to conduct research on this issue through her fascination with the virus. “The biology of rotaviruses, especially the genome structure and the virus’ interaction with the host, is fascinating.”

“In fact, it is estimated that, globally, ALL children will be infected with rotavirus before the age of five, irrespective of their socio-economic standing. However, infants and young children in poor countries are more vulnerable due to inadequate healthcare. The WHO estimates that approximately 215 000 deaths occur each year. This roughly equates to eight Airbus A380 planes, the largest commercial carrier with a capacity of approximately 500 seats, filled with only children under the age of five, crashing each week of every year.”

Alternative to expensive medicines 
“Currently, there are two vaccines that have been licensed for global use. However, these vaccines are expensive and poor countries, where the need is the greatest, are struggling to introduce them sustainably. It is therefore appealing to study rotaviruses, as it is scientifically challenging, but could at the same time have an impact on child health,” Dr O’Neill said.

The main focus of Dr O’Neill’s research is to develop a more affordable vaccine that can promote child vaccination in countries/areas that cannot afford the current vaccines.

All about a different approach 

When asked about the most profound finding of her research, Dr O’Neill responded: “It is not so much a finding, but rather the approach. My rotavirus research group is making use of yeast as vehicle to produce a sub-unit vaccine. These microbes are attractive, as they are relatively easy to manipulate and cheap to cultivate. Downstream production costs can therefore be reduced. The system we use was developed by my colleagues, Profs Koos Albertyn and Martie Smit, and allows for the potential use of any yeast. This enables us to screen a vast number of yeasts in order to identify the best yeast producer.”

Vaccination recently acquired a bad name in the media for its adverse side effects. As researcher, Dr O’Neill has this to say: “Vaccines save lives. By vaccinating your child, you don’t just protect your own child from a potentially deadly infection, but also other children in your community that might be too young to be vaccinated or have pre-existing health problems that prevents vaccination.” 

A future without rotavirus vaccination?

Dr O’Neill believes a future without rotavirus vaccination will be a major step backwards, as the impact of rotavirus vaccines has been profound. “Studies in Mexico and Malawi actually show a reduction in deaths. A colleague in Mozambique has commented on the empty hospital beds that amazed both clinicians and scientists only one year after the introduction of the vaccine in that country. Although many parents, mostly in developed countries, don’t have to fear dehydrating diarrhoea and potential hospitalisation of their babies due to rotavirus infection anymore, such an infection could still be a death sentence in countries that have not been able to introduce the vaccine in their national vaccination programmes,” she said. 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept