Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
30 June 2021 | Story André Damons | Photo André Damons
Dr Nicholas Pearce, Head of the COVID-19 Task Team at the Universitas Academic Hospital, leads a dedicated team of professionals at the testing and vaccination site of the Universitas Academic Hospital, adjacent to our Bloemfontein Campus.

It is impossible to quantify the number of hours Dr Nicholas Pearce, Head of the COVID-19 Task Team for the Universitas Academic Hospital, spent working in response to this deadly virus since the first case was reported in South Africa last year. 

According to Dr Pearce, who is the Head of the Department of General Surgery in the Faculty of Health Sciences at the University of the Free State (UFS), the initial preparation phase required many hours of brainstorming, planning, and physical hours working on site. He also spent countless hours awake at night trying to come up with solutions for the many challenges faced along the way. This is in addition to being available telephonically twenty-four-seven for any issues related to equipment, staffing, and facilities.

“I was attending a vascular surgery congress in Germany last year January (2020) when China just announced the outbreak of COVID-19. I noticed an increased number of travellers wearing surgical masks at an airport in the Middle East when I was travelling to South Africa. 

“Upon my return to work, I approached management to discuss procurement of PPEs, as it was just a matter of time before COVID-19 would hit South Africa and the rest of the world. When things escalated, I was asked to head the COVID-19 response team at Universitas Hospital,” explains Dr Pearce.

Kind human being with a soft heart

(Photo: André Damons)

Dr Pearce, who was brought up to always strive to be better, is driven and motivated to succeed. He has a very analytical brain and loves challenges. In fact, he does not believe in problems and only sees challenges. This kind human being can sometimes seem quite tough on the outside, but actually has a very soft heart. 

“I think it is human nature to want to feel needed. I have an inherent urge to help my fellow human beings. This is also the reason why I became a health-care professional and why I am passionate about teaching,” says Dr Pearce. 

With South Africa lagging behind with its vaccination programme, the hard work is far from over for Dr Pearce and his team. Says Dr Pearce: “The initiation of a mass vaccination site posed a whole new set of challenges, which once again required many hours of planning. The initial stages of running the vaccination site required many hours of physical hard work a day. Then there is also the daily operations meeting at 18:00 every weekday to discuss the vaccine roll-out in the province.”

Frustrations and setbacks

For Dr Pearce, this pandemic highlighted the differences between individuals from different social classes in our country. Providing quarantine and self-isolation facilities for individuals who do not have access to such facilities at home is one such example. 

“We all have a right to clean water and good quality healthcare. This also includes a right to oxygen. This right to oxygen has proved to be one of our great challenges in managing this pandemic. Delivery of these large amounts of oxygen has been especially challenging. Some days we require in excess of five tons of oxygen,” says Dr Pearce. 

(Photo: André Damons)


There have been many frustrations and setbacks on this journey, some of which can be quite demoralising and demotivating, but knowing that he is doing something good for his fellow human beings gives this gentle and diligent healthcare worker a tremendous amount of energy. “Positive feedback from patients and colleagues far outshines all the frustrations and disappointments,” concludes Dr Pearce. 


Outside of work

After finishing online meetings at home, Dr Pearce relaxes with his partner by chatting about the day’s events and cooking supper together while enjoying a glass of wine. He also tries to connect with family who lives in Gauteng. Because of work pressures and the pandemic, he has not been able to see them as much. 

News Archive

What do diamonds, chocolates, bugs and almost 30 Nobel Prizes have in common? Crystallography
2014-10-15

 

Some of the keynote speakers and chairpersons at the third world summit in the International Year of Crystallography (in Africa) were, from the left, front: Profs Abdelmalek Thalal (Morocco), Prosper Kanyankogote (University of Kinshasa, Democratic Republic of the Congo); Habib Bougzala (Tunisia), Santiago Garcia-Granda (IUCr, University Oviedo, Spain), Michele Zema (IYCr 2014, Italy/UK) and Dr Jean-Paul Ngome-Abiaga (UNESCO, Paris, France); back: Dr Thomas Auf der Heyde (Acting Director-general, South African Department of Science and Technology); Dr Petrie Steynberg (SASOL) and Prof André Roodt (UFS, host).

Photo: Marija Zbacnik
The third world summit in the International Year of Crystallography (in Africa) was hosted by Prof André Roodt, Head of the Department of Chemistry and President of the European Crystallographic Association,  at the University of the Free State in Bloemfontein.

A declaration with and appeal to support crystallography and science across Africa, was signed.

When one mentions 'Crystallography', or more simply 'crystals', what comes to mind? Diamonds? Perhaps jewellery in general? When thinking of crystals and Crystallography, you will need to think much bigger. And further – even to Mars and back.

Crystallography refers to the branch of science that is concerned with structure and properties of crystals. The obvious examples would include cut diamonds, gemstones such as amethysts, and ‘simple’ crystals such as selenite and quartz.

But have you thought about the irritating brown scales at the bottom of your kettle? The sand in your shoes? The salt over your lamb chops or the sugar in your coffee? All crystals. From egg shells to glucose, from bugs and insecticides to additives in food – even the compounds in chocolate – all fall under the close scrutiny of Crystallography.

The breakthroughs this field of science has produced have led to almost 30 Nobel Prizes over the years.

Determining the structure of DNA by crystallography was arguably one of the most significant scientific events of the 20th century. Different diseases have been cured or slowed by medicines obtained based on crystallographic studies. These include certain cancers, HIV/Aids, Tuberculosis and Malaria. Biological Crystallography enables the development of anti-viral drugs and vaccines.

This field of science influences our daily lives in virtually immeasurable ways. Here are but a few areas of study and development Crystallography contributes to:

•    LCD displays;
•    cellular smartphones;
•    insects and insecticides;
•    additives and products in foods;
•    improved effectiveness and security of credit cards;
•    new materials to preserve energy;
•    better gasoline with less by-products;
•    identify colour pigments used in paintings from the old masters, indicating if it’s an original or an imitation; and
•    beauty products such as nail polish, sun-block, mascara and eye shadow.

Crystallography is also currently used by the Curiosity Rover to analyse the substances and minerals on Mars.

Crystals and Crystallography form an integrated part of our daily lives – from bones and teeth to medicines and viruses, from chocolates to the blades in airplane turbines. Even down to the humble snowflake.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept