Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
30 June 2021 | Story André Damons | Photo André Damons
Dr Nicholas Pearce, Head of the COVID-19 Task Team at the Universitas Academic Hospital, leads a dedicated team of professionals at the testing and vaccination site of the Universitas Academic Hospital, adjacent to our Bloemfontein Campus.

It is impossible to quantify the number of hours Dr Nicholas Pearce, Head of the COVID-19 Task Team for the Universitas Academic Hospital, spent working in response to this deadly virus since the first case was reported in South Africa last year. 

According to Dr Pearce, who is the Head of the Department of General Surgery in the Faculty of Health Sciences at the University of the Free State (UFS), the initial preparation phase required many hours of brainstorming, planning, and physical hours working on site. He also spent countless hours awake at night trying to come up with solutions for the many challenges faced along the way. This is in addition to being available telephonically twenty-four-seven for any issues related to equipment, staffing, and facilities.

“I was attending a vascular surgery congress in Germany last year January (2020) when China just announced the outbreak of COVID-19. I noticed an increased number of travellers wearing surgical masks at an airport in the Middle East when I was travelling to South Africa. 

“Upon my return to work, I approached management to discuss procurement of PPEs, as it was just a matter of time before COVID-19 would hit South Africa and the rest of the world. When things escalated, I was asked to head the COVID-19 response team at Universitas Hospital,” explains Dr Pearce.

Kind human being with a soft heart

(Photo: André Damons)

Dr Pearce, who was brought up to always strive to be better, is driven and motivated to succeed. He has a very analytical brain and loves challenges. In fact, he does not believe in problems and only sees challenges. This kind human being can sometimes seem quite tough on the outside, but actually has a very soft heart. 

“I think it is human nature to want to feel needed. I have an inherent urge to help my fellow human beings. This is also the reason why I became a health-care professional and why I am passionate about teaching,” says Dr Pearce. 

With South Africa lagging behind with its vaccination programme, the hard work is far from over for Dr Pearce and his team. Says Dr Pearce: “The initiation of a mass vaccination site posed a whole new set of challenges, which once again required many hours of planning. The initial stages of running the vaccination site required many hours of physical hard work a day. Then there is also the daily operations meeting at 18:00 every weekday to discuss the vaccine roll-out in the province.”

Frustrations and setbacks

For Dr Pearce, this pandemic highlighted the differences between individuals from different social classes in our country. Providing quarantine and self-isolation facilities for individuals who do not have access to such facilities at home is one such example. 

“We all have a right to clean water and good quality healthcare. This also includes a right to oxygen. This right to oxygen has proved to be one of our great challenges in managing this pandemic. Delivery of these large amounts of oxygen has been especially challenging. Some days we require in excess of five tons of oxygen,” says Dr Pearce. 

(Photo: André Damons)


There have been many frustrations and setbacks on this journey, some of which can be quite demoralising and demotivating, but knowing that he is doing something good for his fellow human beings gives this gentle and diligent healthcare worker a tremendous amount of energy. “Positive feedback from patients and colleagues far outshines all the frustrations and disappointments,” concludes Dr Pearce. 


Outside of work

After finishing online meetings at home, Dr Pearce relaxes with his partner by chatting about the day’s events and cooking supper together while enjoying a glass of wine. He also tries to connect with family who lives in Gauteng. Because of work pressures and the pandemic, he has not been able to see them as much. 

News Archive

Research contributes to improving quality of life for cancer patients
2016-11-21

Description: Inorganic Chemistry supervisors  Tags: Inorganic Chemistry supervisors

Inorganic Chemistry supervisors in the Radiopharmacy
Laboratory during the preparation of a typical complex
mixture to see how fast it reacts. Here are, from the left,
front: Dr Marietjie Schutte-Smith, Dr Alice Brink
(both scholars from the UFS Prestige
Scholar Programme), and Dr Truidie Venter (all three
are Thuthuka-funded researchers).
Back: Prof André Roodt and Dr Johan Venter.
Photo: Supplied

Imagine that you have been diagnosed with bone cancer and only have six months to live. You are in a wheelchair because the pain in your legs is so immense that you can’t walk anymore – similar to a mechanism eating your bones from the inside.

You are lucky though, since you could be injected with a drug to control the pain so effective that you will be able to get out of the wheelchair within a day-and-a-half and be able to walk again. Real-life incidents like these provide intense job satisfaction to Prof André Roodt, Head of Inorganic Chemistry at the University of the Free State (UFS). The research, which is conducted by the Inorganic Group at the UFS, contributes greatly to the availability of pain therapy that does not involve drugs, but improves the quality of life for cancer patients.

The research conducted by the Inorganic Group under the leadership of Prof Roodt, plays a major role in the clever design of model medicines to better detect and treat cancer.

The Department of Chemistry is one of approximately 10 institutions worldwide that conducts research on chemical mechanisms to identify and control cancer. “The fact that we are able to cooperate with the Departments of Nuclear Medicine and Medical Physics at the UFS, the Animal Research Centre, and other collaborators in South Africa and abroad, but especially the methodology we utilise to conduct research (studying the chemical manner in which drugs are absorbed in cancer as well as the time involved), enhances the possibility of making a contribution to cancer research,” says Prof Roodt.

Technique to detect cancer spots on bone
According to the professor, there are various ways of detecting cancer in the body. Cancer can, inter alia, be identified by analysing blood, X-rays (external) or through an internal technique where the patient is injected with a radioactive isotope.

Prof Roodt explains: “The doctor suspects that the patient has bone cancer and injects the person with a drug consisting of an isotope (only emits X-rays and does no damage to tissue) that is connected to a phosphonate (similar to those used for osteoporosis). Once the drug is injected, the isotope (Technetium-99m) moves to the spot on the bone where the cancer is located. The gamma rays in the isotope illuminate the area and the doctor can see exactly where treatment should be applied. The Technetium-99m has the same intensity gamma rays as normal X-rays and therefore operates the same as an internal X-ray supply.” With this technique, the doctor can see where the cancer spots are within a few hours.

The same technique can be used to identify inactive parts of the brain in Alzheimer patients, as well as areas of the heart where there is no blood supply or where the heart muscle is dead.

Therapeutic irradiation of cancer
For the treatment of pain connected with cancer, the isotope Rhenium-186 is injected. Similar to the manner in which the Technetium-99m phosphonate compound is ingested into the body, the Rhenium-186 phosphonate travels to the cancer spots. Patients thus receive therapeutic irradiation – a technique known as palliative therapy, which is excellent for treating pain. A dosage of this therapy usually lasts for about two months.

The therapy is, however, patient specific. The dosages should correspond with the occurrence and size of cancer spots in the patient’s body. First, the location of the cancer will be determined by means of a technetium scan. After that, the size of the area where the cancer occurs has to be determined. The dosage for addressing total pain distribution will be calculated according to these results.

Technique to detect cancer spots on soft tissue
Another technique to detect cancer as spots on bone or in soft tissue and organs throughout the body is by utilising a different type of irradiation, a so-called PET isotope. The Fluor-18 isotope is currently used widely, and in Pretoria a machine called a cyclotron was produced by Dr Gerdus Kemp, who is a former PhD graduate from the Inorganic Research Group. The F-18 is then hidden within a glucose molecule and a patient will be injected with the drug after being tranquillised and after the metabolism has been lowered considerably. The glucose, which is the ‘food' that cancer needs to grow, will then travel directly to the cancer area and the specific area where the cancer is located will thus be traced and ‘illuminated’ by the Fluor-18, which emits its own 'X-rays'.

In the late 80s, Prof Roodt did his own postdoctoral study on this research in the US. He started collaborating with the Department of Nuclear Medicine at the UFS in the early 90s, when he initiated testing for this research.

Through their research of more than 15 years, the Inorganic Group in the Department of Chemistry has made a major contribution to cancer research. Research on mechanisms for the detection of cancer, by designing new clever chemical agents, and the chemical ways in which these agents are taken up in the body, especially contributes to the development in terms of cancer therapy and imaging, and has been used by a number of hospitals in South Africa.

The future holds great promise
Prof Roodt and his team are already working on a bilateral study between the UFS and Kenya. It involves the linking of radio isotopes, as mentioned above, to known natural products (such as rooibos tea), which possess anti-cancer qualities.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept