Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 June 2021 | Story Dr Cindé Greyling | Photo Supplied

A brand-new modular space for students was recently completed on the University of the Free State Bloemfontein Campus. The Modular Lecturing Space and Assessment Centre is a bold step to engage with the changing academic environment. It is an example of how collaboration between UFS faculties, the Centre for Teaching and Learning, ICT Services, and University Estates can create cutting-edge and innovative learning and teaching environments.

One space, many functions

The centre, which took 22 months to complete, consists of innovative multi-functional spaces that can be used for large- and small-scale lectures or group work. The biggest venue, which can accommodate up to 980 students, can also be converted into five acoustically separate venues with a variety of table configurations depending on the educational needs. 

In line with the newly adopted blended learning approach, the digital infrastructure in the centre allows for the seamless integration of technology, as all the spaces are equipped with state-of-the-art audio-visual equipment. The computer laboratory and assessment centre, which can accommodate 800 students, can be used for examination or teaching and can be divided into two separate areas if needed. 

Functional study stops 

The centre offers an area where students can pause and study in groups around tables with a laptop-friendly study ledge that runs along the length of the space. Sufficient power points allow students to recharge their devices in an aesthetically pleasing space that promotes optimal engagement with learning. 

The design brief for this multifunctional space was a collaborative effort between professionals and UFS departments to ensure the most efficient use of space and purpose. The overall focus was on effectiveness and efficiency, which is part of University Estates’ strategy to maximise the use of space.

More to this than meets the eye

The building integrates into its environment with waterwise gardens and numerous indigenous trees planted around the permanent outdoor seating, which can also be used as informal learning spaces. The landscaping is seamlessly accessible with ramps and tactile paving. 

Modern, fully inclusive ablution facilities can accommodate high volumes of traffic, and rainwater is collected in 44 tanks with a capacity of 79 000 litres for watering the landscape, as well as emergency water supply to flush water closets. Heat pump air-conditioning systems with individual control for each room are connected to the campus building management system for effective energy control. 

Further expansion

Phase 2 of the project will entail a 24/7 study space that will accommodate 250 students. The venue will also provide a small recreation area. Completion is scheduled for December 2021.

Although the project team was faced with COVID-19 restrictions during construction, they managed to complete the building within the agreed budget and quality measures. The team is looking forward to creating more functional spaces on the UFS campuses. 

Take a tour of the new Modular Lecturing Space and Assessment Centre Building:

News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept