Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 June 2021 | Story Dr Cindé Greyling | Photo Supplied

A brand-new modular space for students was recently completed on the University of the Free State Bloemfontein Campus. The Modular Lecturing Space and Assessment Centre is a bold step to engage with the changing academic environment. It is an example of how collaboration between UFS faculties, the Centre for Teaching and Learning, ICT Services, and University Estates can create cutting-edge and innovative learning and teaching environments.

One space, many functions

The centre, which took 22 months to complete, consists of innovative multi-functional spaces that can be used for large- and small-scale lectures or group work. The biggest venue, which can accommodate up to 980 students, can also be converted into five acoustically separate venues with a variety of table configurations depending on the educational needs. 

In line with the newly adopted blended learning approach, the digital infrastructure in the centre allows for the seamless integration of technology, as all the spaces are equipped with state-of-the-art audio-visual equipment. The computer laboratory and assessment centre, which can accommodate 800 students, can be used for examination or teaching and can be divided into two separate areas if needed. 

Functional study stops 

The centre offers an area where students can pause and study in groups around tables with a laptop-friendly study ledge that runs along the length of the space. Sufficient power points allow students to recharge their devices in an aesthetically pleasing space that promotes optimal engagement with learning. 

The design brief for this multifunctional space was a collaborative effort between professionals and UFS departments to ensure the most efficient use of space and purpose. The overall focus was on effectiveness and efficiency, which is part of University Estates’ strategy to maximise the use of space.

More to this than meets the eye

The building integrates into its environment with waterwise gardens and numerous indigenous trees planted around the permanent outdoor seating, which can also be used as informal learning spaces. The landscaping is seamlessly accessible with ramps and tactile paving. 

Modern, fully inclusive ablution facilities can accommodate high volumes of traffic, and rainwater is collected in 44 tanks with a capacity of 79 000 litres for watering the landscape, as well as emergency water supply to flush water closets. Heat pump air-conditioning systems with individual control for each room are connected to the campus building management system for effective energy control. 

Further expansion

Phase 2 of the project will entail a 24/7 study space that will accommodate 250 students. The venue will also provide a small recreation area. Completion is scheduled for December 2021.

Although the project team was faced with COVID-19 restrictions during construction, they managed to complete the building within the agreed budget and quality measures. The team is looking forward to creating more functional spaces on the UFS campuses. 

Take a tour of the new Modular Lecturing Space and Assessment Centre Building:

News Archive

Prof Tredoux turns theories regarding the formation of metals on its head
2013-09-17

 

Prof Marian Tredoux
17 September 2013

The latest research conducted by Prof Marian Tredoux of the Department of Geology, in collaboration with her research assistant Bianca Kennedy and their colleagues in Germany, placed established theories regarding how minerals of the platinum-group of elements are formed, under close scrutiny.

The article on this research of which Prof Tredoux is a co-author – ‘Noble metal nanoclusters and nanoparticles precede mineral formation in magmatic sulphide melts’ – was published in Nature Communications on 6 September 2013. It is an online journal for research of the highest quality in the fields of biological, physical and chemical sciences.

This study found that atoms of platinum and arsenic create nanoclusters, long before the mineral sperrylite can crystallise. Thus, the platinum does not occur as a primary sulphur compound. The research was conducted at the Steinmann Institute of the University of Bonn, Germany, as well as here in Bloemfontein.

Monetary support from Inkaba yeAfrica – a German-South African multidisciplinary and intercultural Earth Science collaborative of the National Research Foundation (NRF) – made this research possible. Studies are now also being conducted on other metals in the precious metal group, specifically palladium, rhodium and ruthenium.

The discovery of the nanoclusters and the combination with arsenic can have far-reaching consequences for the platinum mine industry, if it can be utilised to recover a greater amount of platinum ore and therefore less wastage ending up in mine dumps. This will signify optimal mining of a scarce and valuable metal, one of South Africa’s most important export products.

For Prof Tredoux, the research results also prove thoughts she already had some twenty years ago around the forming of platinum minerals. “Researchers laughed in my face, but the evidence had to wait for the development of technology to prove it.” Young researchers were very excited at recent congresses about the findings, since the new models can bring new insights.

“Chemistry researchers have been talking about platinum element clusters in watery environments for quite a while, but it was thought that these would not appear in magmas (molten rock) due to the high temperatures (>1 000 degrees celsius).”

Prof Tredoux has already delivered lectures at congresses in Scotland, Hungary, Sweden and Italy on this research.

Read the article at: http://www.nature.com/ncomms/2013/130906/ncomms3405/full/ncomms3405.html

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept