Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 June 2021 | Story Dr Cindé Greyling | Photo Supplied

A brand-new modular space for students was recently completed on the University of the Free State Bloemfontein Campus. The Modular Lecturing Space and Assessment Centre is a bold step to engage with the changing academic environment. It is an example of how collaboration between UFS faculties, the Centre for Teaching and Learning, ICT Services, and University Estates can create cutting-edge and innovative learning and teaching environments.

One space, many functions

The centre, which took 22 months to complete, consists of innovative multi-functional spaces that can be used for large- and small-scale lectures or group work. The biggest venue, which can accommodate up to 980 students, can also be converted into five acoustically separate venues with a variety of table configurations depending on the educational needs. 

In line with the newly adopted blended learning approach, the digital infrastructure in the centre allows for the seamless integration of technology, as all the spaces are equipped with state-of-the-art audio-visual equipment. The computer laboratory and assessment centre, which can accommodate 800 students, can be used for examination or teaching and can be divided into two separate areas if needed. 

Functional study stops 

The centre offers an area where students can pause and study in groups around tables with a laptop-friendly study ledge that runs along the length of the space. Sufficient power points allow students to recharge their devices in an aesthetically pleasing space that promotes optimal engagement with learning. 

The design brief for this multifunctional space was a collaborative effort between professionals and UFS departments to ensure the most efficient use of space and purpose. The overall focus was on effectiveness and efficiency, which is part of University Estates’ strategy to maximise the use of space.

More to this than meets the eye

The building integrates into its environment with waterwise gardens and numerous indigenous trees planted around the permanent outdoor seating, which can also be used as informal learning spaces. The landscaping is seamlessly accessible with ramps and tactile paving. 

Modern, fully inclusive ablution facilities can accommodate high volumes of traffic, and rainwater is collected in 44 tanks with a capacity of 79 000 litres for watering the landscape, as well as emergency water supply to flush water closets. Heat pump air-conditioning systems with individual control for each room are connected to the campus building management system for effective energy control. 

Further expansion

Phase 2 of the project will entail a 24/7 study space that will accommodate 250 students. The venue will also provide a small recreation area. Completion is scheduled for December 2021.

Although the project team was faced with COVID-19 restrictions during construction, they managed to complete the building within the agreed budget and quality measures. The team is looking forward to creating more functional spaces on the UFS campuses. 

Take a tour of the new Modular Lecturing Space and Assessment Centre Building:

News Archive

Dr Abdon Atangana cements his research globally by solving fractional calculus problem
2014-12-03

 

Dr Abdon Atangana

To publish 29 papers in respected international journals – and all of that in one year – is no mean feat. Postdoctoral researcher Abdon Atangana at the Institute for Groundwater Studies at the University of the Free State (UFS) reached this mark by October 2014, shortly before his 29th birthday.

His latest paper, ‘Modelling the Advancement of the Impurities and the Melted Oxygen concentration within the Scope of Fractional Calculus’, has been accepted for publication by the International Journal of Non-Linear Mechanics.

In previously-published research he solved a problem in the field of fractional calculus by introducing a fractional derivative called ‘Beta-derivative’ and its anti-derivative called ‘Atangana-Beta integral’, thereby cementing his research in this field.

Dr Atangana, originally from Cameroon, received his PhD in Geohydrology at the UFS in 2013. His research interests include:
• the theory of fractional calculus;
• modelling real world problems with fractional order derivatives;
• applications of fractional calculus;
• analytical methods for partial differential equations;
• analytical methods for ordinary differential equations;
• numerical methods for partial and ordinary differential equations; and
• iterative methods and uncertainties modelling.

Dr Atangana says that, “Applied mathematics can be regarded as the bridge between theory and practice. The use of mathematical tools for solving real world problems is as old as creation itself. As written in the book Genesis ‘And God saw the light, that it was good; and divided the light from the darkness’, the word division appears here as the well-known method of separation of variables, this method is usually employed to solve a class of linear partial differential equations”.

“A mathematical model is a depiction of a system using mathematical concepts and language. The procedure of developing a mathematical model is termed mathematical modelling. Mathematical models are used not only in natural sciences, but also in social sciences such as economics, psychology, sociology and political sciences. These models help to explain systems and to study the effects of different components, and to make predictions about behaviours.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept