Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 June 2021 | Story Dr Cindé Greyling | Photo Supplied

A brand-new modular space for students was recently completed on the University of the Free State Bloemfontein Campus. The Modular Lecturing Space and Assessment Centre is a bold step to engage with the changing academic environment. It is an example of how collaboration between UFS faculties, the Centre for Teaching and Learning, ICT Services, and University Estates can create cutting-edge and innovative learning and teaching environments.

One space, many functions

The centre, which took 22 months to complete, consists of innovative multi-functional spaces that can be used for large- and small-scale lectures or group work. The biggest venue, which can accommodate up to 980 students, can also be converted into five acoustically separate venues with a variety of table configurations depending on the educational needs. 

In line with the newly adopted blended learning approach, the digital infrastructure in the centre allows for the seamless integration of technology, as all the spaces are equipped with state-of-the-art audio-visual equipment. The computer laboratory and assessment centre, which can accommodate 800 students, can be used for examination or teaching and can be divided into two separate areas if needed. 

Functional study stops 

The centre offers an area where students can pause and study in groups around tables with a laptop-friendly study ledge that runs along the length of the space. Sufficient power points allow students to recharge their devices in an aesthetically pleasing space that promotes optimal engagement with learning. 

The design brief for this multifunctional space was a collaborative effort between professionals and UFS departments to ensure the most efficient use of space and purpose. The overall focus was on effectiveness and efficiency, which is part of University Estates’ strategy to maximise the use of space.

More to this than meets the eye

The building integrates into its environment with waterwise gardens and numerous indigenous trees planted around the permanent outdoor seating, which can also be used as informal learning spaces. The landscaping is seamlessly accessible with ramps and tactile paving. 

Modern, fully inclusive ablution facilities can accommodate high volumes of traffic, and rainwater is collected in 44 tanks with a capacity of 79 000 litres for watering the landscape, as well as emergency water supply to flush water closets. Heat pump air-conditioning systems with individual control for each room are connected to the campus building management system for effective energy control. 

Further expansion

Phase 2 of the project will entail a 24/7 study space that will accommodate 250 students. The venue will also provide a small recreation area. Completion is scheduled for December 2021.

Although the project team was faced with COVID-19 restrictions during construction, they managed to complete the building within the agreed budget and quality measures. The team is looking forward to creating more functional spaces on the UFS campuses. 

Take a tour of the new Modular Lecturing Space and Assessment Centre Building:

News Archive

Mathematical methods used to detect and classify breast cancer masses
2016-08-10

Description: Breast lesions Tags: Breast lesions

Examples of Acho’s breast mass
segmentation identification

Breast cancer is the leading cause of female mortality in developing countries. According to the World Health Organization (WHO), the low survival rates in developing countries are mainly due to the lack of early detection and adequate diagnosis programs.

Seeing the picture more clearly

Susan Acho from the University of the Free State’s Department of Medical Physics, breast cancer research focuses on using mathematical methods to delineate and classify breast masses. Advancements in medical research have led to remarkable progress in breast cancer detection, however, according to Acho, the methods of diagnosis currently available commercially, lack a detailed finesse in accurately identifying the boundaries of breast mass lesions.

Inspiration drawn from pioneer

Drawing inspiration from the Mammography Computer Aided Diagnosis Development and Implementation (CAADI) project, which was the brainchild Prof William Rae, Head of the department of Medical Physics, Acho’s MMedSc thesis titled ‘Segmentation and Quantitative Characterisation of Breast Masses Imaged using Digital Mammography’ investigates classical segmentation algorithms, texture features and classification of breast masses in mammography. It is a rare research topic in South Africa.

 Characterisation of breast masses, involves delineating and analysing the breast mass region on a mammogram in order to determine its shape, margin and texture composition. Computer-aided diagnosis (CAD) program detects the outline of the mass lesion, and uses this information together with its texture features to determine the clinical traits of the mass. CAD programs mark suspicious areas for second look or areas on a mammogram that the radiologist might have overlooked. It can act as an independent double reader of a mammogram in institutions where there is a shortage of trained mammogram readers. 

Light at the end of the tunnel

Breast cancer is one of the most common malignancies among females in South Africa. “The challenge is being able to apply these mathematical methods in the medical field to help find solutions to specific medical problems, and that’s what I hope my research will do,” she says.

By using mathematics, physics and digital imaging to understand breast masses on mammograms, her research bridges the gap between these fields to provide algorithms which are applicable in medical image interpretation.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept