Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
21 June 2021 Photo Supplied
Carmien Tolmie
Dr Carmien Tolmie says being involved in the Global Challenges Research Fund (GCRF) START grant over the past three years has made a very concrete contribution to her career as a young scientist.

Dr Carmien Tolmie – Lecturer in the Department of Microbiology and Biochemistry at the University of the Free State (UFS) – is one of 30 postdoctoral research assistants in the United Kingdom and Africa who have benefited from the £3,7 M Global Challenges Research Fund (GCRF) START grant over the past three years. The grant was made available by the Science and Technology Facilities Council (STFC) in support of the Synchrotron Techniques for African Research and Technology (START) programme. The STFC is based in the United Kingdom.

The grant seeks to build partnerships between world-leading scientists in Africa and the UK who are working on research using synchrotron science. Forming part of this collaboration is the UK’s national synchrotron, Diamond Light Source (Diamond). The synchrotron, one of about 70 in the world, can be explained as a large machine, almost the size of a football field, which accelerates electrons to nearly the speed of light. According to Diamond, these fast-moving electrons produce very bright light, called synchrotron light. Scientists can use this light to study minute matter such as atoms and molecules.

 

Celebrating a new generation of scientists

On 7 June 2021, GCRF START celebrated its successes of the past years via a virtual event, including the new generation of scientists they trained. Diamond Light Source (Diamond) hosted the event.

In a statement issued by Diamond Light Source, Dr Tolmie was said to be one of the rising stars in the newly emerging Structural Biology network in South Africa. The statement reads that Dr Tolmie has made great strides with biocatalysis, investigating enzymes as drug targets for fungal infectious diseases that claim many lives, especially among immunocompromised patients.

Dr Tolmie claims that the workings of the natural world have always interested her, especially how it can be used to sustainably improve human health and agriculture. Observing some of the health challenges in Africa motivated her to take the opportunity to work with Prof Dirk Opperman, Associate Professor in the UFS Department of Microbiology and Biochemistry. Prof Opperman is a GCRF START co-investigator in the UFS Biocatalysis and Structural Biology research group, working on various bacterial and fungal enzymes.

Focusing on structural biology, Dr Tolmie is also working on drug discovery projects to find a sustainable solution through novel antifungal drugs.

To conduct the research that can improve the health of so many people suffering from infectious fungal diseases that can be serious, especially for immunocompromised patients living with HIV/Aids, recipients of organ transplants, patients undergoing chemotherapy and many more, Dr Tolmie will be using the drug discovery method of X-ray crystallographic fragment screening at Diamond Light Source (Diamond). “I was introduced to the concept and power of fragment screening techniques during GCRF START meetings,” says Dr Tolmie.

A research visit to Diamond Light Source in the UK in 2019, where she learned more about the experimental workflow of XChem and the i04-1 beamline, also inspired her to embark on XChem projects for antifungal drug discovery.

 

Exposed to cutting-edge scientific techniques

She attributes her recent appointment as lecturer to the mentoring and training she received through the GCRF START grant, which also funded a secondment to Diamond and the University of Oxford, exposing her to cutting-edge scientific techniques such as XChem fragment screening.

Prof Chris Nicklin, Science Group Leader and Principal Investigator in the GCRF START grant programme, says by providing the new generation of synchrotron users with access to world-class equipment and investing in their skills and capacity, research in the UK and Africa has been enriched and deepened.

“Being involved in the START grant has made a very concrete contribution to my career as a young scientist. GCRF START has also exposed me to many esteemed international scientists and facilities,” says Dr Tolmie.

Specifically alluding to the research that Dr Tolmie is working on, Dr Gwyndaf Evans, START Life Sciences Principal Investigator and principal beamline scientist on Diamond’s VMXm beamline, says: “It has been rewarding to see the relatively modest investment of time and money have such a major impact on the sustainability of research expertise, on the development of careers in Africa, on access to large-scale facilities around the world, and on the nurturing of collaborations and networks in South Africa.”

He continues: “In structural biology, there have been valuable exchanges and collaborations, especially XChem laying the foundations for drug discovery work. START is the beginning of embedding the structural research culture in South Africa and other groups around the world. We look forward to what the future holds.”

Dr Tolmie, who completed her BSc degree in Molecular Biology and Biotechnology at Stellenbosch University, completed her postgraduate studies (BSc Honours degree, MSc, and PhD) at the UFS.

News Archive

Link between champagne bubbles and the UFS?
2012-11-16

Prof. Lodewyk Kock with an example of a front page of the publication FEMS Yeast Research, as adapted by F. Belliard, FEMS Central Office.
Photo: Leatitia Pienaar
15 November 2012

What is the link between the bubbles in champagne and breakthrough research being done at the Mayo Clinic in America? Nano research being done at our university.

Prof. Lodewyk Kock of Biotechnology says a human being consists of millions of minute cells that are invisible to the eye. The nano technology team at the UFS have developed a technique that allows researchers to look into such a cell, as well as other microorganisms. In this way, they can get an idea of what the cell’s “insides” look like.

The UFS team – consisting of Profs. Kock, Hendrik Swart (Physics), Pieter van Wyk (Centre for Microscopy), as well as Dr Chantel Swart (Biotechnology), Dr Carlien Pohl (Biotechnology) and Liza Coetsee (Physics) – were amazed to see that the inside of cells consist of a maze of small tunnels or blisters. Each tunnel is about 100 and more nanometres in diameter – about one ten thousandth of a millimetre – that weaves through the cells in a maze.

It was also found that these tunnels are the “lungs” of the cells. Academics doing research on yeast have had to sit up and take notice of the research being done at the UFS – to the extent that these “lungs” will appear on the front page of the highly acclaimed FEMS Yeast Research for all of 2013.

The Mayo Clinic, in particular, now wants to work with the UFS to study cancer cells in more detail in order to fight this disease, says Prof. Kock. The National Cancer Institute of America has also shown interest. This new nano technology for biology can assist in the study and development of nano medicine that can be used in the treatment of cancer and other life threatening diseases. Nano medicine uses nano metal participles that are up to one billionth of a metre in size.

Prof. Kock says laboratory tests indicate that nano medicine can improve the efficacy of anti-cancer medicine, which makes the treatment less toxic. “According to the Mayo Clinic team, nano particles are considered as a gold cartridge which is being fired directly at a cancer tumour. This is compared to fine shot that spreads through the body and also attacks healthy cells.”

“This accuracy implies that the chemotherapy dose can be lowered with fewer side effects. The Mayo Clinic found that one-tenth of the normal dosage is more effective against pancreas cancer in this way than the full dosage with a linkage to nano particles. According to the clinic, this nano medicine could also delay the spread of cancer,” says Prof. Kock.

The nano particles are used as messengers that convey anti-cancer treatment to cancer cells, where it then selectively kills the cancer cells. The transport and transfer of these medicines with regard to gold nano particles can be traced with the UFS’s nano technology to collect more information, especially where it works on the cell.

“With the new nano technology of the UFS, it is possible to do nano surgery on the cells by slicing the cells in nanometre thin slices while the working of the nano medicine is studied. In this way, it can be established if the nano medicine penetrates the cells or if it is only associated with the tiny tunnels,” says Prof. Kock.

And in champagne the small “lungs” are responsible for the bubbles. The same applies to beer and with this discovery a whole new reach field opens for scientists.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept