Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
21 June 2021 Photo Supplied
Carmien Tolmie
Dr Carmien Tolmie says being involved in the Global Challenges Research Fund (GCRF) START grant over the past three years has made a very concrete contribution to her career as a young scientist.

Dr Carmien Tolmie – Lecturer in the Department of Microbiology and Biochemistry at the University of the Free State (UFS) – is one of 30 postdoctoral research assistants in the United Kingdom and Africa who have benefited from the £3,7 M Global Challenges Research Fund (GCRF) START grant over the past three years. The grant was made available by the Science and Technology Facilities Council (STFC) in support of the Synchrotron Techniques for African Research and Technology (START) programme. The STFC is based in the United Kingdom.

The grant seeks to build partnerships between world-leading scientists in Africa and the UK who are working on research using synchrotron science. Forming part of this collaboration is the UK’s national synchrotron, Diamond Light Source (Diamond). The synchrotron, one of about 70 in the world, can be explained as a large machine, almost the size of a football field, which accelerates electrons to nearly the speed of light. According to Diamond, these fast-moving electrons produce very bright light, called synchrotron light. Scientists can use this light to study minute matter such as atoms and molecules.

 

Celebrating a new generation of scientists

On 7 June 2021, GCRF START celebrated its successes of the past years via a virtual event, including the new generation of scientists they trained. Diamond Light Source (Diamond) hosted the event.

In a statement issued by Diamond Light Source, Dr Tolmie was said to be one of the rising stars in the newly emerging Structural Biology network in South Africa. The statement reads that Dr Tolmie has made great strides with biocatalysis, investigating enzymes as drug targets for fungal infectious diseases that claim many lives, especially among immunocompromised patients.

Dr Tolmie claims that the workings of the natural world have always interested her, especially how it can be used to sustainably improve human health and agriculture. Observing some of the health challenges in Africa motivated her to take the opportunity to work with Prof Dirk Opperman, Associate Professor in the UFS Department of Microbiology and Biochemistry. Prof Opperman is a GCRF START co-investigator in the UFS Biocatalysis and Structural Biology research group, working on various bacterial and fungal enzymes.

Focusing on structural biology, Dr Tolmie is also working on drug discovery projects to find a sustainable solution through novel antifungal drugs.

To conduct the research that can improve the health of so many people suffering from infectious fungal diseases that can be serious, especially for immunocompromised patients living with HIV/Aids, recipients of organ transplants, patients undergoing chemotherapy and many more, Dr Tolmie will be using the drug discovery method of X-ray crystallographic fragment screening at Diamond Light Source (Diamond). “I was introduced to the concept and power of fragment screening techniques during GCRF START meetings,” says Dr Tolmie.

A research visit to Diamond Light Source in the UK in 2019, where she learned more about the experimental workflow of XChem and the i04-1 beamline, also inspired her to embark on XChem projects for antifungal drug discovery.

 

Exposed to cutting-edge scientific techniques

She attributes her recent appointment as lecturer to the mentoring and training she received through the GCRF START grant, which also funded a secondment to Diamond and the University of Oxford, exposing her to cutting-edge scientific techniques such as XChem fragment screening.

Prof Chris Nicklin, Science Group Leader and Principal Investigator in the GCRF START grant programme, says by providing the new generation of synchrotron users with access to world-class equipment and investing in their skills and capacity, research in the UK and Africa has been enriched and deepened.

“Being involved in the START grant has made a very concrete contribution to my career as a young scientist. GCRF START has also exposed me to many esteemed international scientists and facilities,” says Dr Tolmie.

Specifically alluding to the research that Dr Tolmie is working on, Dr Gwyndaf Evans, START Life Sciences Principal Investigator and principal beamline scientist on Diamond’s VMXm beamline, says: “It has been rewarding to see the relatively modest investment of time and money have such a major impact on the sustainability of research expertise, on the development of careers in Africa, on access to large-scale facilities around the world, and on the nurturing of collaborations and networks in South Africa.”

He continues: “In structural biology, there have been valuable exchanges and collaborations, especially XChem laying the foundations for drug discovery work. START is the beginning of embedding the structural research culture in South Africa and other groups around the world. We look forward to what the future holds.”

Dr Tolmie, who completed her BSc degree in Molecular Biology and Biotechnology at Stellenbosch University, completed her postgraduate studies (BSc Honours degree, MSc, and PhD) at the UFS.

News Archive

Laptop in, paper out
2013-07-31

 

Prof Pieter Nel gives advice to students.
Photo: Johan Roux
31 July 2013

The first major steps to a paperless lecture environment for the School of Medicine were taken in July 2013 with the presentation of laptops to all first-year- medical students.

The aim is to have the entire undergraduate medical programme computer-driven within a few years and to get rid of paper in the classroom.

Prof Pieter Nel, Programme Director: Health Sciences at the school in the Faculty of Health Sciences, said, “As far as we know, this action is the first of its kind in any medical school in South Africa whereby an entire class are supplied with computers for this purpose. We also have no knowledge of anything similar in any programme within any other faculty at any university in South Africa.”

All first-year medical students received laptops. The UFS is facilitating the process to provide students with computer access via their own laptops. “The reason for this is that the undergraduate health-sciences programme will be totally computerised from now on. Students will therefore utilise their laptops in all their contact sessions.”

The entire building where teaching takes place is equipped with Wi-Fi. The students buy the laptops at a much lower cost than the commercial price.

Prof Nel said the printing costs of study material during a student’s undergraduate study years can amount to as much as R5 000.

In future, first-year students will receive laptops, computerising the entire undergraduate health-sciences programme within a few years, Prof Nel said.

During the presentation of the first laptops, Prof Gert van Zyl, Dean of the Faculty of Health Sciences, referred to this action as a big step forward in modernising the undergraduate training of medical students in the faculty.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept