Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
21 June 2021 Photo Supplied
Carmien Tolmie
Dr Carmien Tolmie says being involved in the Global Challenges Research Fund (GCRF) START grant over the past three years has made a very concrete contribution to her career as a young scientist.

Dr Carmien Tolmie – Lecturer in the Department of Microbiology and Biochemistry at the University of the Free State (UFS) – is one of 30 postdoctoral research assistants in the United Kingdom and Africa who have benefited from the £3,7 M Global Challenges Research Fund (GCRF) START grant over the past three years. The grant was made available by the Science and Technology Facilities Council (STFC) in support of the Synchrotron Techniques for African Research and Technology (START) programme. The STFC is based in the United Kingdom.

The grant seeks to build partnerships between world-leading scientists in Africa and the UK who are working on research using synchrotron science. Forming part of this collaboration is the UK’s national synchrotron, Diamond Light Source (Diamond). The synchrotron, one of about 70 in the world, can be explained as a large machine, almost the size of a football field, which accelerates electrons to nearly the speed of light. According to Diamond, these fast-moving electrons produce very bright light, called synchrotron light. Scientists can use this light to study minute matter such as atoms and molecules.

 

Celebrating a new generation of scientists

On 7 June 2021, GCRF START celebrated its successes of the past years via a virtual event, including the new generation of scientists they trained. Diamond Light Source (Diamond) hosted the event.

In a statement issued by Diamond Light Source, Dr Tolmie was said to be one of the rising stars in the newly emerging Structural Biology network in South Africa. The statement reads that Dr Tolmie has made great strides with biocatalysis, investigating enzymes as drug targets for fungal infectious diseases that claim many lives, especially among immunocompromised patients.

Dr Tolmie claims that the workings of the natural world have always interested her, especially how it can be used to sustainably improve human health and agriculture. Observing some of the health challenges in Africa motivated her to take the opportunity to work with Prof Dirk Opperman, Associate Professor in the UFS Department of Microbiology and Biochemistry. Prof Opperman is a GCRF START co-investigator in the UFS Biocatalysis and Structural Biology research group, working on various bacterial and fungal enzymes.

Focusing on structural biology, Dr Tolmie is also working on drug discovery projects to find a sustainable solution through novel antifungal drugs.

To conduct the research that can improve the health of so many people suffering from infectious fungal diseases that can be serious, especially for immunocompromised patients living with HIV/Aids, recipients of organ transplants, patients undergoing chemotherapy and many more, Dr Tolmie will be using the drug discovery method of X-ray crystallographic fragment screening at Diamond Light Source (Diamond). “I was introduced to the concept and power of fragment screening techniques during GCRF START meetings,” says Dr Tolmie.

A research visit to Diamond Light Source in the UK in 2019, where she learned more about the experimental workflow of XChem and the i04-1 beamline, also inspired her to embark on XChem projects for antifungal drug discovery.

 

Exposed to cutting-edge scientific techniques

She attributes her recent appointment as lecturer to the mentoring and training she received through the GCRF START grant, which also funded a secondment to Diamond and the University of Oxford, exposing her to cutting-edge scientific techniques such as XChem fragment screening.

Prof Chris Nicklin, Science Group Leader and Principal Investigator in the GCRF START grant programme, says by providing the new generation of synchrotron users with access to world-class equipment and investing in their skills and capacity, research in the UK and Africa has been enriched and deepened.

“Being involved in the START grant has made a very concrete contribution to my career as a young scientist. GCRF START has also exposed me to many esteemed international scientists and facilities,” says Dr Tolmie.

Specifically alluding to the research that Dr Tolmie is working on, Dr Gwyndaf Evans, START Life Sciences Principal Investigator and principal beamline scientist on Diamond’s VMXm beamline, says: “It has been rewarding to see the relatively modest investment of time and money have such a major impact on the sustainability of research expertise, on the development of careers in Africa, on access to large-scale facilities around the world, and on the nurturing of collaborations and networks in South Africa.”

He continues: “In structural biology, there have been valuable exchanges and collaborations, especially XChem laying the foundations for drug discovery work. START is the beginning of embedding the structural research culture in South Africa and other groups around the world. We look forward to what the future holds.”

Dr Tolmie, who completed her BSc degree in Molecular Biology and Biotechnology at Stellenbosch University, completed her postgraduate studies (BSc Honours degree, MSc, and PhD) at the UFS.

News Archive

Four modernised controlled environment cabinets inaugurated
2006-07-27

Photographed in a controlled environment cabinet were at the back from the left:  Mr Adriaan Hugo (head of the UFS Electronics and Mechanisation Division), Prof Herman van Schalkwyk (Dean: Faculty of Natural and Agricultural Sciences at the UFS) and Prof Koos Terblans (lecturer at the UFS Department of Physics).  In front is Mr Koos Uys (engineering consultant from Experto Designa who helped with the cooling systems of the cabinets).
Photo: Leonie Bolleurs

Different look for research in controlled circumstances at the UFS  

Research in controlled circumstances at the University of the Free State (UFS) turned a new page today with the inauguration of four modernised controlled environment cabinets of the Department of Soil, Crop and Climate Sciences.

“The controlled environment cabinets, which are situated next to the glass houses on the eastern side of the Agriculture Building on the Main Campus in Bloemfontein, were installed in the early 1980’s.  The cabinets, used for research purposes in controlled circumstances by the UFS for many years, became dysfunctional and needed to be repaired and put into use again,” said Prof Herman van Schalkwyk, Dean: Faculty of Natural and Agricultural Sciences at the UFS.

“The cabinets are used by the agronomics, horticulture and soil science divisions of the Department of Soil, Crop and Climate Sciences to control factors such as the temperature, the intensity and quality of light, synthesis and humidity.  This is done 24 hours a day, with hourly intervals,” said Prof Van Schalkwyk.

The cabinets are ideally suited to determine the joint and separate effects of these factors on the growth of plants.  The adaptability of plants to climate can also be investigated under controlled circumstances.  All of this leads to a better understanding of the growth and development process of plants, more specifically that of agricultural crops. 

“The effect of these environmental factors on the effectiveness of insect killers such as fungus killers, insecticide and weed killers can also be investigated and can help to explain the damage that is sometimes experienced, or even prevent the damage if the research is timeously,” said Prof Van Schalkwyk.

A new cabinet can cost between R2-3 million, depending on the degree of sophistication.  “Although controlled environment cabinets have been used for agricultural research for a long time, it has become costly to maintain them     and even more impossible to purchase new ones,” said Prof Van Schalkwyk.

According to Prof Van Schalkwyk the cabinets were re-built by die UFS Electronics and Mechanisation Division.  Some of the mechanisms were also replaced and computerised.   

“The re-building and mechanisation of the cabinets were funded by the faculty and because the work was done by our own staff, an amount of about R1 million was saved.  The maintenance costs will now be lower as the cabinets are specifically tailor made for our research needs,” said Prof Van Schalkwyk.

Where all monitoring was done manually in the past, the cabinets can now be controlled with a computer.  This programme was designed by Prof Koos Terblans from the UFS Department of Physics. 

According to Prof Van Schalkwyk the modernisation of the cabinets is part of the faculty’s larger strategy to get its instruments and apparatus up to world standards.  “With this project we have proved that we can find a solution for a problem ourselves and that there are ways to get old apparatus functional again,” said Prof Van Schalkwyk.

Media release
Issued by: Lacea Loader
Media Representative
Tel:   (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
26 July 2006

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept