Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 June 2021 | Story Dr Nitha Ramnath

A passion for evidence-based medicine and the notion of value in healthcare is what drives Dr Anchen Laubscher, our guest in the fifth episode of the Voices from the Free State podcast. Anchen is driven to ensure that healthcare is scientifically proven, of high quality, cost effective, and tailored to a patient’s needs.  

François van Schalkwyk and Keenan Carelse, UFS alumni leading the university’s United Kingdom Alumni Chapter, have put their voices together to produce and direct the podcast series.  Intended to reconnect alumni with the university and their university experience, the podcasts will be featured on the first Monday of every month, ending in November 2021.  Our featured alumni share and reflect on their experiences at the UFS, how it has shaped their lives, and relate why their ongoing association with the UFS is still relevant and important. The podcasts are authentic conversations – they provide an opportunity for the university to understand and learn about the experiences of its alumni and to celebrate the diversity and touchpoints that unite them.

 

 

Google Podcasts BadgeRSS Podcasts Logo

 

Our podcast guest

Anchen joined Netcare in 2007 as an aeromedical doctor and has been with the group for almost 14 years. As Group Medical Director of Netcare Ltd, Anchen is responsible for the strategic oversight and operational execution of all clinical and quality-related matters across the different divisions of Netcare. Leading a team of subject matter experts, Anchen oversees the group’s key deliverables related to the value of care, encompassing quality outcomes, patient safety, patient experience, and episode cost efficiency, with all components of ‘value’ digitally enabled and data driven.

Anchen is a member of the Hospital Association of South Africa (HASA) subcommittee for Clinical Quality and the South African Committee of Medical Deans (SACOMD) initiative, which was constituted to address the human resource dilemma specifically related to the training of doctors in South Africa. She is a Council member of the University of the Free State, where she also serves on the Senate and holds director appointments in the Mother and Child Academic Hospital (MACAH) Foundation, the My Walk My Soul collaboration between Netcare and Adcock-Ingram and the University of Cape Town Medical Centre Ltd.  Anchen played a pioneering leadership role in South Africa’s response to the 2014 global Ebola Virus Disease (EVD) outbreak, which continues in her role as Gold Command in Netcare and as member of various national committee and advisory structures related to the COVID-19 pandemic preparedness and response. For her role in the South African EVD response, she was recognised with an honorary award from the South African Military Health Services (SAMHS).

Clinically, Anchen continues to contribute to the specialty of emergency medicine, specifically pre-hospital and aeromedicine. She continues to be involved at her alma mater through ad hoc lecturing in electives, research support at GIBS, and participating in health-care courses and conferences such as the 2020 Healthcare Industry Update and Innovation Conference.

Stay tuned for episode six to be released on 5 July 2021.

For further information regarding the podcast series, or to propose other alumni guests, please email us at alumnipodcast@ufs.ac.za

Listen to all the Voices from the Free State podcasts.

News Archive

Research by experts published in Nature
2011-06-02

 
The members of the research group are, from the left, front: Christelle van Rooyen, Mariana Erasmus, Prof. Esta van Heerden; back: Armand Bester and Prof. Derek Litthauer.
Photo: Gerhard Louw

A  research article on the work by a team of experts at our university, under the leadership of Prof. Esta van Heerden, and counterparts in Belgium and the USA has been published in the distinguished academic journal Nature today (Thursday, 2 June 2011).

The article – Nematoda from the terrestrial deep subsurface of South Africa – sheds more light on life in the form of a small worm living under extreme conditions in deep hot mines. It was discovered 1,3 km under the surface of the earth in the Beatrix Goldmine close to Welkom and is the first multi-cellular organism that was found so far beneath the surface of the earth. The worm (nematode) was found in between a rock face that is between 3 000 and 12 000 years old.

The research can shed some new light on the possibility of life on other planets, previously considered impossible under extreme conditions. It also expands the possibilities into new areas where new organisms may be found.

These small invertebrates live in terrestrial soil subjected to stress almost for 24 hours They live through sunshine, rain, scorching temperatures and freezing conditions. Through time they developed a means to cope with harsh conditions. Terrestrial nematodes (roundworms, not to be confused or related to earthworms) are among those very tough small invertebrates that deal with those conditions everywhere. After insects they are the most dominant multi-cellular (metazoan) species on the planet having a general size of 0,5 to 1 mm and are among the oldest metazoans on the planet, Nature says in a statement on the article.

They inhabit nearly every imaginable habitat form the deep seas to the acid in pitcher . Some nematodes simply eat bacteria and these are the ones we study here. Terrestrial nematodes have developed a survival stage that can take them through hard times (absence of food, extreme temperatures, too little oxygen, crowding, and more).

At the head of the research was Prof. Gaetan Borgonie of the Ghent University in Belgium and a world leader in the discipline of nematode research. He was brought into contact with the South African research leader, Prof. Esta van Heerden, who set up a cooperation agreement with the University of Ghent and Prof. Borgonie. Prof. Van Heerden manages the Extreme Biochemistry group at the UFS and the research was funded by several research grants.

The search for worms began in earnest in 2007, but it was soon clear that the sampling strategy was insufficient. A massive sampling campaign in 2008-2009 in several mines led to the discovery of several nematodes and the new nematode species Halicephalobus mephisto. It is named after the legend of Faust where the devil, also known as the lord of the underworld is called Mephistopheles.

Nature says special filters had to be designed and installed on various boreholes. Unfortunately, there is no easy way of finding a magic formula and designs had to be adapted by trial and error; improving existing designs all the time. The work of the UFS Mechanical Workshop, which manufactured, adapted and helped design it, was crucial in this respect. Filters were left on the holes for varying periods, sometimes for a few hours and sometimes for months. Prof. Derek Litthauer from the UFS played a big role in sampling, filter designs and coming up with ideas for names for the new nematode with Prof. Borgonie.

Research showed that the nematodes can live in the deep for up to 12 000 years. Three students – Armand Bester, Mariana Erasmus and Christelle van Rooyen from the UFS – did the work on this.

The importance of multi-cellular animals living in the ultra-deep subsurface is twofold: The nematodes graze on the existing bacterial population and influence their turnover. Secondly, if more complex multi-cellular organisms can survive in the deep subsurface on earth, this may be good news when looking for life on other planets where the surface is considered too inhospitable (e.g. Mars). Complex life forms can be found in ecosystems previously thought to be uninhabitable. Nature says this expands the possibilities into new areas where new organisms may be discovered.

Future research will focus on selective boreholes to look for more metazoans, so that a better idea of the complexity of the ecosystems there can be obtained. It will also look for metazoans in the deep subsurface on other continents to determine similarities and differences.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept