Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 June 2021 | Story Dr Nitha Ramnath

A passion for evidence-based medicine and the notion of value in healthcare is what drives Dr Anchen Laubscher, our guest in the fifth episode of the Voices from the Free State podcast. Anchen is driven to ensure that healthcare is scientifically proven, of high quality, cost effective, and tailored to a patient’s needs.  

François van Schalkwyk and Keenan Carelse, UFS alumni leading the university’s United Kingdom Alumni Chapter, have put their voices together to produce and direct the podcast series.  Intended to reconnect alumni with the university and their university experience, the podcasts will be featured on the first Monday of every month, ending in November 2021.  Our featured alumni share and reflect on their experiences at the UFS, how it has shaped their lives, and relate why their ongoing association with the UFS is still relevant and important. The podcasts are authentic conversations – they provide an opportunity for the university to understand and learn about the experiences of its alumni and to celebrate the diversity and touchpoints that unite them.

 

 

Google Podcasts BadgeRSS Podcasts Logo

 

Our podcast guest

Anchen joined Netcare in 2007 as an aeromedical doctor and has been with the group for almost 14 years. As Group Medical Director of Netcare Ltd, Anchen is responsible for the strategic oversight and operational execution of all clinical and quality-related matters across the different divisions of Netcare. Leading a team of subject matter experts, Anchen oversees the group’s key deliverables related to the value of care, encompassing quality outcomes, patient safety, patient experience, and episode cost efficiency, with all components of ‘value’ digitally enabled and data driven.

Anchen is a member of the Hospital Association of South Africa (HASA) subcommittee for Clinical Quality and the South African Committee of Medical Deans (SACOMD) initiative, which was constituted to address the human resource dilemma specifically related to the training of doctors in South Africa. She is a Council member of the University of the Free State, where she also serves on the Senate and holds director appointments in the Mother and Child Academic Hospital (MACAH) Foundation, the My Walk My Soul collaboration between Netcare and Adcock-Ingram and the University of Cape Town Medical Centre Ltd.  Anchen played a pioneering leadership role in South Africa’s response to the 2014 global Ebola Virus Disease (EVD) outbreak, which continues in her role as Gold Command in Netcare and as member of various national committee and advisory structures related to the COVID-19 pandemic preparedness and response. For her role in the South African EVD response, she was recognised with an honorary award from the South African Military Health Services (SAMHS).

Clinically, Anchen continues to contribute to the specialty of emergency medicine, specifically pre-hospital and aeromedicine. She continues to be involved at her alma mater through ad hoc lecturing in electives, research support at GIBS, and participating in health-care courses and conferences such as the 2020 Healthcare Industry Update and Innovation Conference.

Stay tuned for episode six to be released on 5 July 2021.

For further information regarding the podcast series, or to propose other alumni guests, please email us at alumnipodcast@ufs.ac.za

Listen to all the Voices from the Free State podcasts.

News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept