Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 June 2021 | Story Dr Nitha Ramnath

A passion for evidence-based medicine and the notion of value in healthcare is what drives Dr Anchen Laubscher, our guest in the fifth episode of the Voices from the Free State podcast. Anchen is driven to ensure that healthcare is scientifically proven, of high quality, cost effective, and tailored to a patient’s needs.  

François van Schalkwyk and Keenan Carelse, UFS alumni leading the university’s United Kingdom Alumni Chapter, have put their voices together to produce and direct the podcast series.  Intended to reconnect alumni with the university and their university experience, the podcasts will be featured on the first Monday of every month, ending in November 2021.  Our featured alumni share and reflect on their experiences at the UFS, how it has shaped their lives, and relate why their ongoing association with the UFS is still relevant and important. The podcasts are authentic conversations – they provide an opportunity for the university to understand and learn about the experiences of its alumni and to celebrate the diversity and touchpoints that unite them.

 

 

Google Podcasts BadgeRSS Podcasts Logo

 

Our podcast guest

Anchen joined Netcare in 2007 as an aeromedical doctor and has been with the group for almost 14 years. As Group Medical Director of Netcare Ltd, Anchen is responsible for the strategic oversight and operational execution of all clinical and quality-related matters across the different divisions of Netcare. Leading a team of subject matter experts, Anchen oversees the group’s key deliverables related to the value of care, encompassing quality outcomes, patient safety, patient experience, and episode cost efficiency, with all components of ‘value’ digitally enabled and data driven.

Anchen is a member of the Hospital Association of South Africa (HASA) subcommittee for Clinical Quality and the South African Committee of Medical Deans (SACOMD) initiative, which was constituted to address the human resource dilemma specifically related to the training of doctors in South Africa. She is a Council member of the University of the Free State, where she also serves on the Senate and holds director appointments in the Mother and Child Academic Hospital (MACAH) Foundation, the My Walk My Soul collaboration between Netcare and Adcock-Ingram and the University of Cape Town Medical Centre Ltd.  Anchen played a pioneering leadership role in South Africa’s response to the 2014 global Ebola Virus Disease (EVD) outbreak, which continues in her role as Gold Command in Netcare and as member of various national committee and advisory structures related to the COVID-19 pandemic preparedness and response. For her role in the South African EVD response, she was recognised with an honorary award from the South African Military Health Services (SAMHS).

Clinically, Anchen continues to contribute to the specialty of emergency medicine, specifically pre-hospital and aeromedicine. She continues to be involved at her alma mater through ad hoc lecturing in electives, research support at GIBS, and participating in health-care courses and conferences such as the 2020 Healthcare Industry Update and Innovation Conference.

Stay tuned for episode six to be released on 5 July 2021.

For further information regarding the podcast series, or to propose other alumni guests, please email us at alumnipodcast@ufs.ac.za

Listen to all the Voices from the Free State podcasts.

News Archive

UFS researcher engineers metal surfaces
2015-03-03

Shaun Cronjé, a PhD student, in a surface characterisation laboratory at the UFS.

It is well known that the surface of a component is much more vulnerable to damage than the interior, and that surface-originated degradation such as wear, corrosion, and fracture will eventually destroy the component.

“Engineering the surface, based on scientific knowledge, is essential to control these damaging processes. It also creates electronic and geometric structures on the surface which opens up a world of new devices, especially considering the properties on the nano-length scale,” said Prof Wiets Roos from the Department of Physics at the University of the Free State (UFS).

At elevated temperatures, atoms are more mobile and can migrate to grain boundaries and surfaces, which have a major influence on material properties. The redistribution of solute atoms between the surface and the bulk of the material is known as segregation. Knowing the behaviour of segregation at the surface/environment interface can be very useful in the development of new materials. As an example materials can be improved higher efficiency and lower fuel consumption, thus reducing environmental pollution.

The main aims of Prof Roos’s research are to understand surface segregation, use it as a tool, and contribute to the various surface engineering fields.

The surface characterisation laboratories at the UFS are well equipped to do high temperature segregation measurements, and have already proven a success, not only in the ability to prepare the specimens for characterisation, but also in developing models and procedures to quantify the segregation parameters.

The most recent results have demonstrated the importance of taking evaporation into account during quantification.” This has laid the foundation for future studies by installing the necessary hardware in a surface characterisation spectrometer, establishing experimental protocols, and improving an existing model (developed in this laboratory) for simulating segregation profiles,” said Prof Roos.

Segregation parameters allow the researcher to predict and utilise the surface concentration behaviour as a function of temperature and time. “This not only contributes to fields involving corrosion, oxidation, sintering, wear, chemical poisoning, powder metallurgy, and lubrication but adds to the development of self-healing devices,” said Prof Roos.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept