Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
15 June 2021 | Story Leonie Bolleurs | Photo Supplied
Zurika Murray says the study of Behavioural Genetics at the UFS focuses on human behaviour, specifically neurotransmitter systems, such as serotonin that may contribute to specific behavioural patterns.
Zurika Murray says the study of Behavioural Genetics at the UFS focuses on human behaviour, specifically neurotransmitter systems, such as serotonin that may contribute to specific behavioural patterns.

Hi. I am John. I have anger issues.

Just like John, there are thousands of South Africans with anger issues, often leading to violent crimes such as the more than 21 000 murder cases and 165 000 plus assault cases reported in 2020, according to a study by the South African Police Service and Statistics South Africa.

Aggression can be a great threat to society when it leads to violence. However, it can also be an absolute necessity when it leads to perseverance and a drive towards success and survival. This is according to Zurika Murray, a lecturer in the Department of Genetics at the University of the Free State (UFS), who is doing research on behavioural genetics.

 

Behavioural genetics

She explains behavioural genetics as a study of genetic variation contributing to how an organism interacts with and within its environment. “At the UFS, we focus on human behaviour, and specifically neurotransmitter systems, such as serotonin that may contribute to specific behavioural patterns.”

When one has the right amount of serotonin in your body, it is easier to have stable moods and a sense of well-being.

She says the neurotransmitter (which plays a role in, among others, emotional regulation) acts as a mediator, relaying messages and influencing response to environmental stimuli.  “This system is very adaptable, facilitating our functioning in an ever-changing emotional environment; but when dysfunctional, it can cause quite a number of abnormalities, from anxiety and depression to dysfunctional impulse control and violence. When some individuals are exposed to adverse developmental environments such as abuse and neglect, they can develop aggression and violence.”

“One of our current projects looks specifically at male juvenile delinquency and monoamine neurotransmitter systems (such as serotonin) that may contribute to specific characteristics (such as impulsivity) of delinquency.”

According to Murray, their research is also looking at the genetic variation within specific neurotransmitter genes to see if they could find similarities among individuals with similar developmental backgrounds.  “This neurotransmitter system additionally responds relatively well to physical activity as a management strategy for aggression in some individuals. We are looking at variations in this system that might explain this,” says Murray.

 

Genetic counselling

Apart from the genetic contribution, we also know that the developmental environment plays a very important role. Many people observe anger while growing up – it was thus part of their developmental environment. For them, it is appropriate behaviour in specific situations.

To understand this contribution from the developmental environment, a background in psychology is necessary.  The undergraduate degree in Behavioural Genetics at the UFS has Genetics and Psychology as majors, and this is where the link to genetic counselling comes in.

Murray explains that genetic counselling is a field in medical sciences focusing on helping patients affected by medical conditions to understand the underlying genetics.  For individuals with a family history of genetic conditions (such as specific cancers) or pregnant mothers with foetuses affected by genetic abnormalities (such as Down syndrome), the services of a genetic counsellor are invaluable.  A genetic counsellor will help these individuals understand the cause of the disorder, how it was diagnosed, what the symptoms are, what the progression will look like, if any treatment is available, and what the possible options are (if any) for alternatives.

Genetic counsellors need a strong background in both Genetics and Psychology. To become a registered genetic counsellor, a student completes a BSc degree in Biological Sciences (Behavioural Genetics at the UFS would be ideal).  Thereafter an honours degree in either Genetics or Psychology (though Genetics is preferable).  The student can then apply at either the University of the Witwatersrand or the University of Cape Town for a master’s degree in Genetic Counselling.  This entails two years of study, followed by two years of practical internship. Only after this you will be able to register with the Health Professions Council of South Africa (HPCSA) as a genetic counsellor.

Students studying Behavioural Genetics at the UFS are off to a great start. Murray’s teaching philosophy is to always strive to deliver students who are better than she is. “I can only really do this by sharing my passion for my research. I hope to inspire my students to also always be hungrily curious, to always question, and to find the joy in knowledge and learning.”

News Archive

From wheat protein to perfect pizza
2017-09-26

Description: Phd Read more Tags: Barend Wentzel, Department of Plant Sciences, plant breeding, proteins, Agricultural Research Council 

Barend Wentzel received his PhD at the Department
of Plant Sciences during the university’s
winter graduation ceremony.
He is pictured here with Prof Maryke Labuschagne,
professor in Plant Breeding at the UFS.
Photo: Charl Devenish

Barend Wentzel, an alumnus of the University of the Free State’s Department of Plant Sciences, is passionate about plant breeding. 

He literally eats and lives wheat proteins. In 1989 he initiated a breeding programme on arum lilies. “This breeding programme is at an advanced stage,” he said. Besides reading, playing the piano and accordion, Barend, due to the nature of his research at the Agricultural Research Council, also experiments with different types of ciabatta recipes made from sour dough. “I usually make my own pizza on Saturday evenings,” he said.

He is working at the Agricultural Research Council – Small Grain (ARC-SG) at the Wheat Quality Laboratory where he established a Cereal Chemistry Laboratory.

Complexity of flour quality

He explains that the focus of his research is on wheat protein composition. “The research conducted for my PhD study explains the complexity of flour quality to a certain extent, and it further emphasises the influence of the environment and genetic composition on selected baking characteristics. 

“Wheat protein can be divided into different types of protein fractions. These protein fractions contribute differently to dough properties and baking quality and the expression is affected by different components in the environment, including locality, rainfall and temperature. 

“Protein content alone does, however, not explain the variation in baking quality parameters, such as mixing time, dough strength and extensibility, and loaf volume.

“Several methods can be applied to quantify the different protein fractions. I am using high-performance liquid-chromatography (HPLC). The procedure entails the separation of a wheat protein extract through a column with chromatographic packing material. The injected sample is pumped through the column (known as the stationary phase) with a solvent (known as the mobile phase). The specific procedure, size-exclusion high-performance liquid-chromatography (SE-HPLC), is also used by the university’s Department of Plant Breeding, as well as in several international Cereal Chemistry Laboratories,” said Barend.

Dough strength and to loaf volume
“One of the highlights from the study was the positive contribution of the albumin and globulin protein fractions to dough strength and to loaf volume. The findings were wheat cultivar specific and the growing environment influenced the expression. The contribution of these protein fractions was much larger than previously reported for South African wheat cultivars,” said Barend. 
“Previous reports indicated that these protein fractions had a non-specific contribution to the gluten network during dough formation. The findings from this PhD justify further research on albumins and globulin proteins.” 

The Cereal Chemistry Laboratory at ARC-SG is involved in postgraduate student training under Barend’s guidance. He serves as co-promoter for several MSc and PhD students. He is also a collaborator on an international project with the International Maize and Wheat Improvement Centre (CIMMYT) in Mexico. Barend is furthermore working on improving wheat quality for processing and health purposes as a member of the expert working group of the International Wheat Initiative. 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept