Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
15 June 2021 | Story Leonie Bolleurs | Photo Supplied
Zurika Murray says the study of Behavioural Genetics at the UFS focuses on human behaviour, specifically neurotransmitter systems, such as serotonin that may contribute to specific behavioural patterns.
Zurika Murray says the study of Behavioural Genetics at the UFS focuses on human behaviour, specifically neurotransmitter systems, such as serotonin that may contribute to specific behavioural patterns.

Hi. I am John. I have anger issues.

Just like John, there are thousands of South Africans with anger issues, often leading to violent crimes such as the more than 21 000 murder cases and 165 000 plus assault cases reported in 2020, according to a study by the South African Police Service and Statistics South Africa.

Aggression can be a great threat to society when it leads to violence. However, it can also be an absolute necessity when it leads to perseverance and a drive towards success and survival. This is according to Zurika Murray, a lecturer in the Department of Genetics at the University of the Free State (UFS), who is doing research on behavioural genetics.

 

Behavioural genetics

She explains behavioural genetics as a study of genetic variation contributing to how an organism interacts with and within its environment. “At the UFS, we focus on human behaviour, and specifically neurotransmitter systems, such as serotonin that may contribute to specific behavioural patterns.”

When one has the right amount of serotonin in your body, it is easier to have stable moods and a sense of well-being.

She says the neurotransmitter (which plays a role in, among others, emotional regulation) acts as a mediator, relaying messages and influencing response to environmental stimuli.  “This system is very adaptable, facilitating our functioning in an ever-changing emotional environment; but when dysfunctional, it can cause quite a number of abnormalities, from anxiety and depression to dysfunctional impulse control and violence. When some individuals are exposed to adverse developmental environments such as abuse and neglect, they can develop aggression and violence.”

“One of our current projects looks specifically at male juvenile delinquency and monoamine neurotransmitter systems (such as serotonin) that may contribute to specific characteristics (such as impulsivity) of delinquency.”

According to Murray, their research is also looking at the genetic variation within specific neurotransmitter genes to see if they could find similarities among individuals with similar developmental backgrounds.  “This neurotransmitter system additionally responds relatively well to physical activity as a management strategy for aggression in some individuals. We are looking at variations in this system that might explain this,” says Murray.

 

Genetic counselling

Apart from the genetic contribution, we also know that the developmental environment plays a very important role. Many people observe anger while growing up – it was thus part of their developmental environment. For them, it is appropriate behaviour in specific situations.

To understand this contribution from the developmental environment, a background in psychology is necessary.  The undergraduate degree in Behavioural Genetics at the UFS has Genetics and Psychology as majors, and this is where the link to genetic counselling comes in.

Murray explains that genetic counselling is a field in medical sciences focusing on helping patients affected by medical conditions to understand the underlying genetics.  For individuals with a family history of genetic conditions (such as specific cancers) or pregnant mothers with foetuses affected by genetic abnormalities (such as Down syndrome), the services of a genetic counsellor are invaluable.  A genetic counsellor will help these individuals understand the cause of the disorder, how it was diagnosed, what the symptoms are, what the progression will look like, if any treatment is available, and what the possible options are (if any) for alternatives.

Genetic counsellors need a strong background in both Genetics and Psychology. To become a registered genetic counsellor, a student completes a BSc degree in Biological Sciences (Behavioural Genetics at the UFS would be ideal).  Thereafter an honours degree in either Genetics or Psychology (though Genetics is preferable).  The student can then apply at either the University of the Witwatersrand or the University of Cape Town for a master’s degree in Genetic Counselling.  This entails two years of study, followed by two years of practical internship. Only after this you will be able to register with the Health Professions Council of South Africa (HPCSA) as a genetic counsellor.

Students studying Behavioural Genetics at the UFS are off to a great start. Murray’s teaching philosophy is to always strive to deliver students who are better than she is. “I can only really do this by sharing my passion for my research. I hope to inspire my students to also always be hungrily curious, to always question, and to find the joy in knowledge and learning.”

News Archive

State-of-the-art physics equipment and investment in students result in academic success
2017-09-26

Description: State-of-the-art physics equipment 1 Tags: State-of-the-art physics equipment 1 

At the recent nanotechnology facility tour at the UFS,
were, from the left, Dr Mthuthuzeli Zamxaka, SAASTA;
Prof Hendrik Swart, Sarchi Chair in the Department of Physics;
and Xolani Makhoba, Department of Science and Technology.
Photo: Leonie Bolleurs

Nanoscience, which is revealing new properties of very small arrangements of atoms, called nanoparticles, is opening a new world of possibilities. The Department of Physics at the University of the Free State is undertaking fundamental research with potential commercial applications. Its equipment and expertise is giving solid state physics research the edge in South Africa.

The UFS team of researchers and students are passionate about studying planets and atoms, all under one roof. Recently, the department, in collaboration with the South African Agency for Science and Technology Advancement (SAASTA), hosted a nanotechnology facility tour to give the public, learners and the media the opportunity to familiarise themselves with the science of nanotechnology, its origins, potential applications and risks.

Successes of the department
According to Prof Hendrik Swart, Senior Professor in the Department of Physics, the increase in resources since 2008 is playing a big role in the success rate of its research outputs. The Sarchi Chair awarded to Prof Swart in 2012 (bringing with it funding for equipment and bursaries) also contributed to the successes in the department.

The UFS Directorate Research Development also availed funding that was used for bursaries. These bursaries made it possible for the department to appoint 10 post-doctoral fellows, not one of them originally from South Africa.

The investment in people and equipment resulted in researchers and students publishing some 80 articles in 2016. Their work was also cited more than 900 times by other researchers in that year.

Another highlight in terms of the department’s growth in the past 10 years is the new wing of the Physics Building. Physics at the UFS is the only place in sub-Saharan Africa where state-of-the art equipment is found under one roof.

Description: State-of-the-art physics equipment 2  Tags: State-of-the-art physics equipment 2  

Antonie Fourie, Junior Lecturer in the UFS Department of
Physics, explained to a group of delegates and
members of the media the workings of an electron beam
evaporation system.
Photo: Leonie Bolleurs

Application of research
The department is a unique research facility with equipment that includes the X-ray Photoelectron Spectrometer (for the study of atoms), the Scanning Auger Microscope, as well as the Ion Time-of-Flight Secondary Ion Mass Spectrometer (revealing the chemical bonds in a sample, and drawing maps of the positions of atoms).

One of the areas on which the department is focusing its research, is phosphors. Researchers are exploring light emitting diodes (LEDs) which use less energy, are brighter and provide a wider viewing field. They are also looking into LED displays (LCDs) which are used in flat screens – the phosphors create the different colours and backlighting.

The research on solar cells reveals that phosphors can increase their efficiency by increasing the range of light frequencies which can be converted into electricity. Glow-in-the-dark coatings absorb light in the day and emit it later so cells can charge at night. As glow-in-the-dark phosphors become cheaper and more effective, they can be used as a lighting substitute on the walls of houses, street numbers and stop signs.

Video production of the Department of Physics research and equipment

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept