Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
15 June 2021 | Story Leonie Bolleurs | Photo Supplied
Zurika Murray says the study of Behavioural Genetics at the UFS focuses on human behaviour, specifically neurotransmitter systems, such as serotonin that may contribute to specific behavioural patterns.
Zurika Murray says the study of Behavioural Genetics at the UFS focuses on human behaviour, specifically neurotransmitter systems, such as serotonin that may contribute to specific behavioural patterns.

Hi. I am John. I have anger issues.

Just like John, there are thousands of South Africans with anger issues, often leading to violent crimes such as the more than 21 000 murder cases and 165 000 plus assault cases reported in 2020, according to a study by the South African Police Service and Statistics South Africa.

Aggression can be a great threat to society when it leads to violence. However, it can also be an absolute necessity when it leads to perseverance and a drive towards success and survival. This is according to Zurika Murray, a lecturer in the Department of Genetics at the University of the Free State (UFS), who is doing research on behavioural genetics.

 

Behavioural genetics

She explains behavioural genetics as a study of genetic variation contributing to how an organism interacts with and within its environment. “At the UFS, we focus on human behaviour, and specifically neurotransmitter systems, such as serotonin that may contribute to specific behavioural patterns.”

When one has the right amount of serotonin in your body, it is easier to have stable moods and a sense of well-being.

She says the neurotransmitter (which plays a role in, among others, emotional regulation) acts as a mediator, relaying messages and influencing response to environmental stimuli.  “This system is very adaptable, facilitating our functioning in an ever-changing emotional environment; but when dysfunctional, it can cause quite a number of abnormalities, from anxiety and depression to dysfunctional impulse control and violence. When some individuals are exposed to adverse developmental environments such as abuse and neglect, they can develop aggression and violence.”

“One of our current projects looks specifically at male juvenile delinquency and monoamine neurotransmitter systems (such as serotonin) that may contribute to specific characteristics (such as impulsivity) of delinquency.”

According to Murray, their research is also looking at the genetic variation within specific neurotransmitter genes to see if they could find similarities among individuals with similar developmental backgrounds.  “This neurotransmitter system additionally responds relatively well to physical activity as a management strategy for aggression in some individuals. We are looking at variations in this system that might explain this,” says Murray.

 

Genetic counselling

Apart from the genetic contribution, we also know that the developmental environment plays a very important role. Many people observe anger while growing up – it was thus part of their developmental environment. For them, it is appropriate behaviour in specific situations.

To understand this contribution from the developmental environment, a background in psychology is necessary.  The undergraduate degree in Behavioural Genetics at the UFS has Genetics and Psychology as majors, and this is where the link to genetic counselling comes in.

Murray explains that genetic counselling is a field in medical sciences focusing on helping patients affected by medical conditions to understand the underlying genetics.  For individuals with a family history of genetic conditions (such as specific cancers) or pregnant mothers with foetuses affected by genetic abnormalities (such as Down syndrome), the services of a genetic counsellor are invaluable.  A genetic counsellor will help these individuals understand the cause of the disorder, how it was diagnosed, what the symptoms are, what the progression will look like, if any treatment is available, and what the possible options are (if any) for alternatives.

Genetic counsellors need a strong background in both Genetics and Psychology. To become a registered genetic counsellor, a student completes a BSc degree in Biological Sciences (Behavioural Genetics at the UFS would be ideal).  Thereafter an honours degree in either Genetics or Psychology (though Genetics is preferable).  The student can then apply at either the University of the Witwatersrand or the University of Cape Town for a master’s degree in Genetic Counselling.  This entails two years of study, followed by two years of practical internship. Only after this you will be able to register with the Health Professions Council of South Africa (HPCSA) as a genetic counsellor.

Students studying Behavioural Genetics at the UFS are off to a great start. Murray’s teaching philosophy is to always strive to deliver students who are better than she is. “I can only really do this by sharing my passion for my research. I hope to inspire my students to also always be hungrily curious, to always question, and to find the joy in knowledge and learning.”

News Archive

UFS Physics Research Chair receives more funding
2017-11-20


 Description: Prof Hendrik Swart, Physics Research Chair receives more funding Tags: Prof Hendrik Swart, Physics Research Chair receives more funding

Prof Hendrik Swart, Senior Researcher Professor in the
Department of Physics at UFS.
Photo: Charl Devenish

A research project into low-energy lighting using phosphor materials for light emitting diodes (LEDs) at the Department of Physics at the University of the Free State (UFS) has received further recognition. 

The South African Research Chairs Initiative (SARChi) has awarded further funding for the Research Chair in Solid State Luminescent and Advanced Materials situated in the department. Prof Hendrik Swart, a Senior Research Professor in the Department of Physics, says this means that the Chair will carry on receiving funds from SARChi for another five years. The Initiative also awarded Prof Swart in 2012 for the research, which resulted in funding for equipment and among others, bursaries.    

Better light emission in LED’s
The research focuses on better light emission of phosphor powers in LEDs. It is also looking into improving LED displays in flat screens. The research into solar cells has shown that phosphors can also increase their efficiency by increasing the range of light frequencies, which convert into electricity. It also entails that glow-in-the-dark coatings absorb light during the day and emit it at night. 

Prof Swart says over the next five years the research will focus on developing and producing devices that emit better light using the substances already developed. “We need to make small devices to see if they are better than those we already have.” In practical terms, it means they want a farmer’s water pump that works with solar energy to work better with less energy input.” 

Device that simulates sunlight
Prof Swart says the renewal of the Chair’s funding means the department can now get equipment to enhance its research   such as a solar simulator. The solar simulator uses white LEDs whose intensity output and wavelengths can be tuned. The output is measured in number of suns. It enables researchers to work in a laboratory with a device that simulates sunlight.     

According to Prof Swart the long-term benefit of the research will result in more environmentally friendly devices which use less energy, are brighter and give a wider viewing field. 

About 10 postdoctoral researchers are working on the studies done by the Chair in collaboration with the Council for Scientific and Industrial Research. 

The Research Chair Initiative aims to improve the research capacity at public universities to produce high-quality postgraduate students, research and innovative outputs. The criterion for evaluating the department’s Chair includes aspects such as how much development has occurred over the past five years. The assessors look at features such as the number of students the research entity has trained and how many publications the research team has produced.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept