Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
15 June 2021 | Story Leonie Bolleurs | Photo Supplied
Zurika Murray says the study of Behavioural Genetics at the UFS focuses on human behaviour, specifically neurotransmitter systems, such as serotonin that may contribute to specific behavioural patterns.
Zurika Murray says the study of Behavioural Genetics at the UFS focuses on human behaviour, specifically neurotransmitter systems, such as serotonin that may contribute to specific behavioural patterns.

Hi. I am John. I have anger issues.

Just like John, there are thousands of South Africans with anger issues, often leading to violent crimes such as the more than 21 000 murder cases and 165 000 plus assault cases reported in 2020, according to a study by the South African Police Service and Statistics South Africa.

Aggression can be a great threat to society when it leads to violence. However, it can also be an absolute necessity when it leads to perseverance and a drive towards success and survival. This is according to Zurika Murray, a lecturer in the Department of Genetics at the University of the Free State (UFS), who is doing research on behavioural genetics.

 

Behavioural genetics

She explains behavioural genetics as a study of genetic variation contributing to how an organism interacts with and within its environment. “At the UFS, we focus on human behaviour, and specifically neurotransmitter systems, such as serotonin that may contribute to specific behavioural patterns.”

When one has the right amount of serotonin in your body, it is easier to have stable moods and a sense of well-being.

She says the neurotransmitter (which plays a role in, among others, emotional regulation) acts as a mediator, relaying messages and influencing response to environmental stimuli.  “This system is very adaptable, facilitating our functioning in an ever-changing emotional environment; but when dysfunctional, it can cause quite a number of abnormalities, from anxiety and depression to dysfunctional impulse control and violence. When some individuals are exposed to adverse developmental environments such as abuse and neglect, they can develop aggression and violence.”

“One of our current projects looks specifically at male juvenile delinquency and monoamine neurotransmitter systems (such as serotonin) that may contribute to specific characteristics (such as impulsivity) of delinquency.”

According to Murray, their research is also looking at the genetic variation within specific neurotransmitter genes to see if they could find similarities among individuals with similar developmental backgrounds.  “This neurotransmitter system additionally responds relatively well to physical activity as a management strategy for aggression in some individuals. We are looking at variations in this system that might explain this,” says Murray.

 

Genetic counselling

Apart from the genetic contribution, we also know that the developmental environment plays a very important role. Many people observe anger while growing up – it was thus part of their developmental environment. For them, it is appropriate behaviour in specific situations.

To understand this contribution from the developmental environment, a background in psychology is necessary.  The undergraduate degree in Behavioural Genetics at the UFS has Genetics and Psychology as majors, and this is where the link to genetic counselling comes in.

Murray explains that genetic counselling is a field in medical sciences focusing on helping patients affected by medical conditions to understand the underlying genetics.  For individuals with a family history of genetic conditions (such as specific cancers) or pregnant mothers with foetuses affected by genetic abnormalities (such as Down syndrome), the services of a genetic counsellor are invaluable.  A genetic counsellor will help these individuals understand the cause of the disorder, how it was diagnosed, what the symptoms are, what the progression will look like, if any treatment is available, and what the possible options are (if any) for alternatives.

Genetic counsellors need a strong background in both Genetics and Psychology. To become a registered genetic counsellor, a student completes a BSc degree in Biological Sciences (Behavioural Genetics at the UFS would be ideal).  Thereafter an honours degree in either Genetics or Psychology (though Genetics is preferable).  The student can then apply at either the University of the Witwatersrand or the University of Cape Town for a master’s degree in Genetic Counselling.  This entails two years of study, followed by two years of practical internship. Only after this you will be able to register with the Health Professions Council of South Africa (HPCSA) as a genetic counsellor.

Students studying Behavioural Genetics at the UFS are off to a great start. Murray’s teaching philosophy is to always strive to deliver students who are better than she is. “I can only really do this by sharing my passion for my research. I hope to inspire my students to also always be hungrily curious, to always question, and to find the joy in knowledge and learning.”

News Archive

Discovery in Scorpius constellation may signify clean energy for Earth
2017-01-23

 Description: Discovery in Scorpius constellation may signify clean energy for Earth Tags: Discovery in Scorpius constellation may signify clean energy for Earth

Earlier this year, a group of international astronomers
announced the discovery of an exotic binary star system,
AR Scorpii. The system is in the Scorpius constellation.
Photos: Supplied

See article on Nature’s website 

In future, stargazers and astronomers will look at the Scorpius constellation near the Milky Way with new eyes. Earlier this year, a group of international astronomers announced the discovery of an exotic binary star system, AR Scorpii. The system is in the Scorpius constellation.

Prof Pieter Meintjes, researcher in the Department of Physics at the University of the Free State (UFS), worked with four colleagues on what he describes as a “wonderful discovery”. This sensational discovery, which could lead to the production of cleaner energy on Earth, will be published in the research journal, Nature, early in 2017.

Model developed to interpret new set of measurements
The exotic binary star which was discovered consists of a red dwarf and a white dwarf revolving around each other every 3,5 hours. The binary system showed very prominent pulsations of 117 and 118 seconds respectively. The pulsations can be explained by a bundle radiation produced by the white dwarf star.

“These new observations have shown that the radiation is strongly polarised, a sign that we are dealing with synchrotron radiation here. Synchrotron radiation is produced by electrons accelerated to extremely high energy levels in the magnetic field of the white dwarf star,” says Prof Meintjes.

He developed a theoretical model to interpret a new set of measurements that was taken by the 1,9 m telescope and the 10 m SALT telescope at the South African Astronomical Observatory (SAA0).

Totally unique phenomenon could contribute to energy production on Earth
“I further indicated that the interaction between the magnetic fields of the white dwarf star and the red dwarf star induces secondary processes that specifically describe the behaviour of the radiation in the radio band and infrared band accurately. AR Sco is the first white-red dwarf binary system of which all the pulsated radiation could be explained by the synchrotron process, which is totally unique,” says Prof Meintjes.

According to Prof Meintjes, the value of the model lies in the fact that the processes which produce the radiation in AR Sco, can also be applied to produce energy on Earth.

 

Plasma reactors are based on roughly the same processes which apply in AR Sco, and with refining, it could be utilised to generate electricity in future. This will be much cleaner than nuclear energy.

 

The model developed by Prof Meintjes explains all the radiation in the system – from radio waves to X-rays – in terms of electrons accelerated to extremely high energy levels by electric fields in the system, which then produce synchrotron radiation over a very wide band of the electromagnetic spectrum.

Prof Meintjes is currently working on a follow-up article examining the evolution of the AR Sco, in other words, the origin of such a unique system and the final state towards which it is evolving. “My vision for the immediate future is therefore to develop a model for the evolution of the source concerned,” he says.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept