Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
15 June 2021 | Story Leonie Bolleurs | Photo Supplied
Zurika Murray says the study of Behavioural Genetics at the UFS focuses on human behaviour, specifically neurotransmitter systems, such as serotonin that may contribute to specific behavioural patterns.
Zurika Murray says the study of Behavioural Genetics at the UFS focuses on human behaviour, specifically neurotransmitter systems, such as serotonin that may contribute to specific behavioural patterns.

Hi. I am John. I have anger issues.

Just like John, there are thousands of South Africans with anger issues, often leading to violent crimes such as the more than 21 000 murder cases and 165 000 plus assault cases reported in 2020, according to a study by the South African Police Service and Statistics South Africa.

Aggression can be a great threat to society when it leads to violence. However, it can also be an absolute necessity when it leads to perseverance and a drive towards success and survival. This is according to Zurika Murray, a lecturer in the Department of Genetics at the University of the Free State (UFS), who is doing research on behavioural genetics.

 

Behavioural genetics

She explains behavioural genetics as a study of genetic variation contributing to how an organism interacts with and within its environment. “At the UFS, we focus on human behaviour, and specifically neurotransmitter systems, such as serotonin that may contribute to specific behavioural patterns.”

When one has the right amount of serotonin in your body, it is easier to have stable moods and a sense of well-being.

She says the neurotransmitter (which plays a role in, among others, emotional regulation) acts as a mediator, relaying messages and influencing response to environmental stimuli.  “This system is very adaptable, facilitating our functioning in an ever-changing emotional environment; but when dysfunctional, it can cause quite a number of abnormalities, from anxiety and depression to dysfunctional impulse control and violence. When some individuals are exposed to adverse developmental environments such as abuse and neglect, they can develop aggression and violence.”

“One of our current projects looks specifically at male juvenile delinquency and monoamine neurotransmitter systems (such as serotonin) that may contribute to specific characteristics (such as impulsivity) of delinquency.”

According to Murray, their research is also looking at the genetic variation within specific neurotransmitter genes to see if they could find similarities among individuals with similar developmental backgrounds.  “This neurotransmitter system additionally responds relatively well to physical activity as a management strategy for aggression in some individuals. We are looking at variations in this system that might explain this,” says Murray.

 

Genetic counselling

Apart from the genetic contribution, we also know that the developmental environment plays a very important role. Many people observe anger while growing up – it was thus part of their developmental environment. For them, it is appropriate behaviour in specific situations.

To understand this contribution from the developmental environment, a background in psychology is necessary.  The undergraduate degree in Behavioural Genetics at the UFS has Genetics and Psychology as majors, and this is where the link to genetic counselling comes in.

Murray explains that genetic counselling is a field in medical sciences focusing on helping patients affected by medical conditions to understand the underlying genetics.  For individuals with a family history of genetic conditions (such as specific cancers) or pregnant mothers with foetuses affected by genetic abnormalities (such as Down syndrome), the services of a genetic counsellor are invaluable.  A genetic counsellor will help these individuals understand the cause of the disorder, how it was diagnosed, what the symptoms are, what the progression will look like, if any treatment is available, and what the possible options are (if any) for alternatives.

Genetic counsellors need a strong background in both Genetics and Psychology. To become a registered genetic counsellor, a student completes a BSc degree in Biological Sciences (Behavioural Genetics at the UFS would be ideal).  Thereafter an honours degree in either Genetics or Psychology (though Genetics is preferable).  The student can then apply at either the University of the Witwatersrand or the University of Cape Town for a master’s degree in Genetic Counselling.  This entails two years of study, followed by two years of practical internship. Only after this you will be able to register with the Health Professions Council of South Africa (HPCSA) as a genetic counsellor.

Students studying Behavioural Genetics at the UFS are off to a great start. Murray’s teaching philosophy is to always strive to deliver students who are better than she is. “I can only really do this by sharing my passion for my research. I hope to inspire my students to also always be hungrily curious, to always question, and to find the joy in knowledge and learning.”

News Archive

UFS hosts consortium to discuss broadening subcontinent’s food base
2017-03-14

Description: Cactus Tags: Cactus

The Steering Committee of the Collaborative
Consortium for Broadening the Food Base comprises,
from the left: Prof Wijnand Swart (UFS),
Dr Sonja Venter (ARC) and Dr Eric Amonsou (DUT).
Photo: Andrè Grobler

There is huge pressure on the agricultural industry in southern Africa to avert growing food insecurity. One of the ways to address this is to broaden the food base on the subcontinent via crop production. Climate change, urbanisation, population growth, pests and diseases continually hamper efforts to alleviate food insecurity. Furthermore, our dependence on a few staple crops such as maize, wheat, potatoes, and sunflower, serve to exacerbate food insecurity.  

Broadening the food base  
To address broadening the food base in southern Africa, scientists from the University of the Free State (UFS), the Durban University of Technology (DUT) and the Agricultural Research Council (ARC) have formed a Collaborative Consortium for the development of underutilised crops by focusing on certain indigenous and exotic crops. The Consortium met at the UFS this week for two days (6, 7 March 2017) to present and discuss their research results. The Principal Investigator of the Consortium, Prof Wijnand Swart of the Department of Plant Sciences in the Faculty of Natural and Agricultural Sciences, said awareness had risen for the need to rescue and improve the use of orphan crops that were up to now, for the most part, left aside by research, technological development, and marketing systems.  

"Many indigenous southern African
plant grains, vegetables and tubers
have the potential to provide a variety
of diets and broaden the household
food base.”

Traditional crops Generally referred to as alternative, traditional or niche crops, five crops are being targeted by the Consortium, namely, two grain legumes, (Bambara groundnut and cowpea), amaranthus (leaf vegetable), cactus pear or prickly pear and amadumbe (a potato-like tuber). Swart said these five crops would play an important role in addressing the food and agricultural challenges of the future. “Many indigenous southern African plant grains, vegetables and tubers have the potential to provide a variety of diets and broaden the household food base.” The potential of the many so-called underutilised crops lies not only in their hardiness and nutritional value but in their versatility of utilisation. "It may be that they contain nutrients that can be explored to meet the demand for functional foods," said Swart.

Scientific institutions working together
The Collaborative Consortium between the three scientific institutions is conducting multi-disciplinary research to develop crop value chains for the five underutilised crops mentioned above. The UFS and ARC are mainly involved in looking at production technologies for managing crop environments and genetic technologies for crop improvement. The DUT is focusing on innovative products development and market development.  

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept