Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
17 June 2021 | Story Xolisa Mnukwa | Photo Supplied
CUADS: Recognised for its efforts in human reconciliation within higher education spaces by creating and providing opportunities for students with disabilities to thrive academically.

In commemoration of Youth Month 2021, the South African government zooms in to uncover opportunities available to the South African youth, drawing more young people into the economy, and initiating various youth development and empowerment initiatives to support young people.

In line with this, the University of the Free State (UFS) Centre for Universal Access and Disability Support (CUADS) has established and implemented a number of technological and academic support measures to humanise the experiences of students with disabilities at the UFS, encouraging universal access and academic success for all students.  The ultimate aim is to have young people with disabilities employed in order to participate in the economy of South Africa.

CUADS continues the mission established when the department first opened: to become a higher-education institution support service recognised for its efforts in human reconciliation by creating and providing opportunities for students with disabilities to ultimately achieve academically, and to have an institutional culture of embracing and welcoming persons with disabilities on all three campuses of the UFS.

According to Martie Miranda, Assistant Director of CUADS and chair of the Higher and Further Education Disability Services Association, CUADS is monumental in its ability to accommodate the specific needs of students with sensory, physical, and learning disabilities, and has inspired other South African universities to enhance the qualities of their services by adapting their strategic visions to that of CUADS, which aims to operationalise and cater for the core needs of students through the UFS Integrated Transformation Plan (ITP), founded on the Strategic Policy Framework on Disability for the post-education and training sector. 

The UFS ITP assists in addressing physical barriers (accessibility to and within buildings, e.g., ramps, doorways, services, and information), attitudinal barriers (communication access, awareness and advocacy, integrated programmes to mix and learn between peers), and structural barriers (policies, flexible service delivery, and employment practices).

CUADS, in line with the UFS Division of Student Affairs (DSA), prioritises student success and plans to maintain continuous engagement with students (on an individual basis, but also per disability category) to continue the support needed to ensure student success.


News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept