Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
30 March 2021 | Story Prof Francis Petersen | Photo Sonia Small (Kaleidoscope Studios)
Prof Francis Petersen.

Systems, processes, and policies are not exactly things that grab the headlines or are popular topics for dinner conversations. But they become vital in times of crisis. 
And if there is one thing that we have learnt from the COVID-19 pandemic, it is that no amount of time, effort or resources should be spared to get them in place before disaster strikes, says Prof Francis Petersen.

During my own education and training in the field of engineering, I was constantly reminded of the value of systems: a set of components working together as parts of a mechanism or an interconnecting network; a complex whole. In subsequent years, I also realised time and time again how system principles can be applied equally successfully in management. In any organisation, systems ensure unified and stable operation. And in times of crisis, they prevent hysteria, uncertainty, and unnecessary waste of time.

Lessons learned in reaction to the pandemic

At the University of the Free State (UFS), we quickly learned the value of acting proactively when it comes to the COVID-19 pandemic, as well as getting sustainable systems in place that operated in unity. Amid all the uncertainty and change, we found that it was vital not to re-act in a knee-jerk manner and steered away from implementing random measures that did not consider the entire institution, its history (how it grew and developed up to this point in time), and its future (the altered, post-COVID-19 landscape).

Early reaction and a sustained focus on the period after the pandemic, characterised our response action. A UFS COVID-19 Task Team was already formed at the end of February 2020, as news of the first infections trickled in from Wuhan, China.

When the first South African COVID-19 infection was reported on 5 March 2020, a Special Executive Group moved into action. It had several focus areas: Teaching and Learning, Staff, Operations, Re-integration of Staff and Students on Campus, Finance, Risk and Legal, COVID-19 Science, and Future Thinking. We immediately began the migration to remote teaching and learning, which involved the training of staff, getting the material online, briefing students, procuring laptops, and zero rating the learning portals.

In mid-March 2020, staff who were able to, were asked to work from home. Events were postponed, staff and students were trained to work in a remote setting, and a moratorium was placed on international travel – even before a national lockdown was put in place by government.

In retrospect, this timely, holistic, systematic approach proved to be invaluable.

Learning from a global system

The pandemic also reinforced the lesson that no country is an island. We should learn from others, not repeat their mistakes, and not ignore their successes.

A successful system never operates in isolation, but is affected by, and has an influence on the systems around it.

As we are entering the vaccine phase of the pandemic, it is more vital than ever to maintain a ‘systems’ approach.  Now is not the time for shortcuts, untested remedies, and vague claims of efficiency. Now is the time for systematic implementation of tried and tested processes, developed over time and underscored by good science.

Our part in the vaccine production system

At the UFS, we are privileged to play a role on two important fronts: 

The South African National Control Laboratory for Biological Products (NCLBP) located on our Bloemfontein Campus, is performing the all-important task of vaccine-lot release. As the sole provider of this service in the country and one of only twelve World Health Organisation (WHO)-contracted laboratories worldwide for vaccine quality-control testing, it forms part of a carefully crafted regulatory system, which has been established, fine-tuned, and tested over many years to serve the interests of the global community.

Vaccines are biological medicines and some of the most complex pharmaceuticals available today. It is vital that their regulation be governed by scientific and not commercial or political principles. It is a role that should under no circumstances simply be given to the ‘lowest bidder’ or the one who promises ‘speedy delivery’.

The NCLBP did not get to play this regulatory role overnight. It was already established in 1997 after an extremely stringent audit by the National Regulatory Authority (NRA) and subsequent recommendations by the WHO.

This means that all its operations – from the way documents are compiled and stored, to the maintenance of equipment and infrastructure, as well as staff competency – are performed according to strict international guidelines and are continuously and closely monitored.

It forms part of an involved system with checks and balances in place to ensure that no mistakes are made. 

Similarly, FARMOVS – a wholly owned clinical research company of the UFS, together with several medical and scientific experts at the university –  has submitted a clinical trial protocol for approval to the South African Health Products Regulatory Authority (SAHPRA) to determine the efficacy of Ivermectin for COVID-19.
FARMOVS was systematically prepared and shaped for this role, having been involved in countless pharmaceutical trials, proving its own efficacy consistently over a protracted period.
Not only is it the only onsite ISO- (International Organisation for Standardisation) and GLP- (Good Laboratory Practice) certified bioanalytical laboratory on the African continent – it has continuously proven itself to adhere to the most rigorous international requirements over the past 47 years.   

It is extremely satisfying – and reassuring – to see how institutions like these two, rooted in sound science, and having proven their consistency, efficiency, and accuracy over many years, are now stepping up to the plate and performing the all-important functions for which they were painstakingly and systematically designed. 

‘Vaccine nationalism’

This pandemic has shown that, through the interconnectedness of our world, one country or region has an impact (in this particular case a health-impact) on other countries and regions. In this context, it is up to rich countries to ensure fair and equitable access to vaccines for poorer countries, and that the WHO proposal to request pharmaceutical companies to waive their intellectual property rights in this regard, should be supported. 

‘Good science’ more important than ever

Another thing the pandemic has highlighted, is the importance of good, sound science amid all the hype, speculation, and false news that unfortunately also characterise the COVID-19 era. 

The co-incidental meteoric rise in the popularity of social media has fuelled the fire of unverified and unscientific claims that are so often just lapped up by information consumers in the public sphere. Unfortunately, since we have entered the vaccine phase, this has become increasingly rife. 

Here, the role of universities as education and research facilities is becoming more important than ever. Not only do we need to provide and communicate the ‘good science’ that everyone craves. But instead of simply advising from the side-line, we should also be playing a vital practical role, actively applying our knowledge, resources, and expertise within the broader society we serve, as has been aptly demonstrated in our important role of vaccine regulating.

Role of universities in the post-pandemic era

Without a doubt, the pandemic has highlighted the importance of online learning, the huge need that exists to be properly equipped for this and has given us a powerful shove in a direction we were already advancing to.

But it has also shown us that, in the midst of increasing digitisation, our need for social and physical interaction remains. The isolation brought about by COVID-19 has taught us that we cannot only function as a digital society. This will probably lead to higher-education institutions presenting a blended mode of learning and teaching in the future; a combination of online learning and face-to-face interactions, ensuring that students still get to experience campus life and the valuable interactions that go with it. 

The pandemic has also helped to crystalise the way in which we as ‘generators of knowledge’ should interact with society. The recent rhetoric of anti-scientific world leaders has caused communities to become distrustful of universities and science. 

We need to actively work on building trust within communities again. And we can only do this by working closely with other sectors of society, gauging real needs, and working together as parts of a bigger system in order to find real, practical solutions that can be seen by everyone to make a positive change in different spheres of society. 

Every organisation, business, government, and institution benefit from having both visionaries and pragmatists.  The visionaries help us to imagine a future we want to live in. The pragmatists work out practical, doable, and sustainable steps to get there. 

Sometimes it becomes necessary for the activists and orators to step aside and create space for the scientists and administrators to systematically get on with what needs to be done.
While we are all eager to move beyond this period in our collective history, back to a world that resembles more of the ‘old normal’ we long for, we should not make hasty, ill-considered moves and take shortcuts to get there.

We should also see this period as our opportunity to push our boundaries, embrace the ‘new normal’, and be innovative in our thinking on how to stay there. 


(Prof Francis Petersen is a registered professional engineer and has served on the executive managements of higher-education institutions, science councils, and industry organisations.)

News Archive

Bloemfontein's quality of tap water compares very favourably with bottled water
2009-08-04

The quality of the drinking water of five suburbs in Bloemfontein is at least as good as or better than bottled water. This is the result of a standard and chemical bacterial analysis done by the University of the Free State’s (UFS) Centre for Environmental Management in collaboration with the Institute for Groundwater Studies (IGS).

Five samples were taken from tap water sources in the suburbs of Universitas, Brandwag, Bain’s Vlei, Langenhoven Park and Bayswater and 15 samples were taken of different brands of still and unflavoured bottled water. The samples were analysed at the laboratory of the IGS, while the interpretation of the analysis was done by the Centre for Environmental Management.

“We wanted to evaluate the difference in quality for human consumption between tap water and that of the different brands of bottled water,” said Prof. Maitland Seaman, Head of the Centre for Environmental Management.

“With the exception of two samples produced by multinational companies at their plants in South Africa, the different brands of bottled water used for the study were produced by South African companies, including a local small-scale Bloemfontein producer,” said Prof. Seaman.

According to the labels, the sources of the water vary from pure spring water, to partial reverse osmosis (as an aid to standardise salt, i.e. mineral, content), to only reverse osmosis (to remove salts). (Reverse osmosis is a process in which water is forced under pressure through a pipe with minute pores through which water passes but no – or very low concentrations of – salts pass.)

According to Prof. Seaman, the analysis revealed some interesting findings, such as:

• It is generally accepted that drinking water should have an acceptable level of salt content, as the body needs salts. Most mineral contents were relatively higher in the tap water samples than the bottled water samples and were very much within the acceptable range of drinkable water quality. One of the bottled samples, however, had a very low mineral content, as the water was produced by reverse osmosis, as stated on the bottle. While reverse osmosis is used by various producers, most producers use it as an aid, not as a single method to remove nearly all the salts. Drinking only such water over a prolonged period may probably have a negative effect on the human physiology.

• The pH values of the tap water samples (8,12–8,40) were found to be slightly higher (slightly alkaline), like in all south-eastern Free State rivers (from where the water is sourced) than the pH of most of the bottled water samples, most of which are sourced and/or treated in other areas. Two brands of bottled water were found to have relatively low pH levels (both 4,5, i.e. acidic) as indicated on their bottles and as confirmed by the IGS analysis. The health implication of this range of pH is not significant.

• The analysis showed differences in the mineral content given on the labels of most of the water bottles compared to that found by IGS analysis. The possibility of seasonal fluctuation in content, depending on various factors, is expected and most of the bottling companies also indicate this on their labels. What was a rather interesting finding was that two pairs of bottled water brands claimed exactly the same mineral content but appeared under different brand names and were also priced differently. In each case, one of the pair was a well-known house brand, and the other obviously the original producer. In one of these paired cases, the house brand stated that the water was spring water, while the other (identical) “original” brand stated that it was spring water treated by reverse osmosis and oxygen-enriched.

• Nitrate (NO3) levels were uniformly low except in one bottled sample, suggesting a low (non-threatening) level of organic pollution in the source water. Otherwise, none of the water showed any sign of pollution.

• The bacterial analysis confirmed the absence of any traces of coliforms or E.coli in any of the samples, as was also indicated by the bottling companies. This is very reassuring. What is not known is how all these waters were sterilised, which could be anything from irradiation to chlorine or ozone treatment.

• The price of the different brands of bottled water, each containing 500 ml of still water, ranged between R3,99 and R8,99, with R5,03 being the average price. A comparison between the least expensive and the most expensive bottles of water indicated no significant difference in quality. In fact, discrepancies were observed in the most expensive bottle in that the amount of Calcium (Ca) claimed to be present in it was found to be significantly different from what the analysis indicated (29,6 mg/l versus 0,92 mg/l). The alkalinity (CaCO3 mg/l) indicated on the bottle was also found to differ considerably (83 mg/l versus 9,4 mg/l). The concentration of Total Dissolved Salts (TDS) was not given on the product.

“The preference for bottled water as compared to Bloemfontein’s tap water from a qualitative perspective as well as the price discrepancy is unjustifiable. The environmental footprint of bottled water is also large. Sourcing, treating, bottling, packaging and transporting, to mention but a few of the steps involved in the processing of bottled water, entail a huge carbon footprint, as well as a large water footprint, because it also requires water for treating and rinsing to process bottled water,” said Prof. Seaman.

Media Release
Lacea Loader
Deputy Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
3 August 2009

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept