Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
02 March 2021 | Story Dr Nitha Ramnath
Francois van Schalkwyk, Keenan Carelse, UFS Alumni, Bertus Jacobs, UFS, University of the Free State, alumni relations, IoT.nxt.

We are pleased to host Bertus Jacobs in our second episode of the Voices of the Free State podcast series. As Chief Technology Officer at IoT.nxt. (Internet of Things), Bertus’ mind is constantly searching for new techniques, and imparting these to his team of developers. Evident from his ‘always on’ approach, Jacobs has optimised his passion for turning ideas into mainstream realities. He co-founded a successful software company, CSS Software, which saw its humble beginnings grow from Bloemfontein-based to an international-footprinted company. CSS Software is regarded as having some of the most innovative products in its market segment and was acquired by a JSE-listed group.

François van Schalkwyk and Keenan Carelse, UFS alumni leading the university’s United Kingdom Alumni Chapter, have put their voices together to produce and direct the podcast series.  Intended to reconnect alumni with the university and their university experience, the podcasts will be featured on the first Monday of every month, ending in November 2021.  Our featured alumni share and reflect on their experiences at the UFS, how it has shaped their lives, and relate why their ongoing association with the UFS is still relevant and important. The podcasts are authentic conversations – they provide an opportunity for the university to understand and learn about the experiences of its alumni and to celebrate the diversity and touchpoints that unite them. 

Listen to the podcast: 

Our podcast guest

While studying towards his BScHons (Computer Science) at the University of the Free State, Bertus developed an SDK (Software Development Kit) with low-level integration into various graphics hardware.  

Bertus has researched many ways of contributing to the growing IT industry – from developing point-of-sale systems that still run today, qualifying as MCP and MCSE, engineering telematic and biometric solutions for clients (UFS was one of them). After being approached to consult in developing a solution for the government, his search for a certain hardware problem and his expertise in the IT realm resulted in his invention of a controller and the birth of the RAPTOR.  Reports that took eight weeks to compile previously, are now at the fingertips of those who need it – all through data harvesting and dashboarding that combines software and hardware. The world-changing RAPTOR delivers a complete IoT solution, which has been internationally validated as being at the forefront of the emerging IoT wave.  IoT.nxt was named Best Commercial and Best Overall Winner at the MTN Business M2M Awards in 2017.  

Stay tuned for episode three to be released on 5 April 2021. 

For further information regarding the podcast series, or to propose other alumni guests, please email us at alumnipodcast@ufs.ac.za 

News Archive

Champagne and cancer have more in common than you might think
2013-05-08

 

Photo: Supplied
08 May 2013

No, a glass of champagne will not cure cancer....

…But they have more in common than you might think.

Researchers from the Departments of Microbial Biochemical and Food Biotechnology, Physics and the Centre for Microscopy at the University of the Free State in South Africa were recently exploring the properties of yeast cells in wine and food to find out more of how yeast was able to manufacture the gas that caused bread to rise, champagne to fizz and traditional beer to foam. And the discovery they made is a breakthrough that may have enormous implications for the treatment of diseases in humans.

The team discovered that they could slice open cells with argon gas particles, and look inside. They were surprised to find a maze of tiny passages like gas chambers that allowed each cell to ‘breathe.’ It is this tiny set of ‘lungs’ that puts the bubbles in your bubbly and the bounce in your bread.

But it was the technique that the researchers used to open up the cells that caught the attention of the scientists at the Mayo Clinic (Tumor Angiogenesis and Vascular Biology Research Centre) in the US.

Using this technology, they ultimately aim to peer inside cells taken from a cancer patient to see how treatment was progressing. In this way they would be able to assist the Mayo team to target treatments more effectively, reduce dosages in order to make treatment gentler on the patient, and have an accurate view of how the cancer was being eliminated.

“Yes, we are working with the Mayo Clinic,” said Profes Lodewyk Kock from the Microbial, Biochemical and Food Biotechnology Department at the UFS.

“This technique we developed has enormous potential for cell research, whether it is for cancer treatment or any other investigation into the working of cells. Through nanotechnology, and our own invention called Auger-architectomics, we are able to see where no-one has been able to see before.”

The team of Prof Kock including Dr Chantel Swart, Kumisho Dithebe, Prof Hendrik Swart (Physics, UFS) and Prof Pieter van Wyk (Centre for Microscopy, UFS) unlocked the ‘missing link’ that explains the existence of bubbles inside yeasts, and incidentally have created a possible technique for tracking drug and chemotherapy treatment in human cells.

Their work has been published recently in FEMS Yeast Research, the leading international journal on yeast research. In addition, their discovery has been selected for display on the cover page of all 2013 issues of this journal.

One can most certainly raise a glass of champagne to celebrate that!

There are links for video lectures on the technique used and findings on the Internet at:

1. http://vimeo.com/63643628 (Comic version for school kids)

2. http://vimeo.com/61521401 (Detailed version for fellow scientists)

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept