Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 March 2021 | Story Leonie Bolleurs
Famelab
Abdullahi Jamiu, who is working on his master's degree in Microbiology, was adjudicated as the FameLab winner at the Central Regional Heat and will represent the region at the national semi-finals.

Abdullahi Jamiu, who is working on his master's degree in Microbiology in the Department of Microbiology and Biochemistry at the University of the Free State (UFS), was recently announced as the FameLab winner at the Central Regional Heat and will represent the region at the national semi-finals.

Abdullahi, who plans on pursuing a doctoral degree after his master’s, says he wants to establish himself as an academic in microbiology.

Making science simple
He says he decided to participate in the FameLab competition because he is very passionate about communicating science. “Science communication affords me the opportunity to not only take my research outside of the lab space, but also to communicate it to the lay audience. Moreover, science is often perceived by the general public as difficult and unfathomable. As such, science communication programmes promote the simplification and better understanding of scientific knowledge in the community,” he says.

FameLab is coordinated by the South African Agency for Science and Technology Advancement, the British Council, and Jive Media Africa.

According to Abdullahi, the experience was mind-blowing. “It gave me the opportunity to compress my 200-page master's thesis into a three-minute talk in a way I had never thought was possible. Having to present virtually and adjust to the ‘new normal’ was quite challenging,” he adds.

“The overall experience was enlightening and engaging, and at the same time entertaining,” says Abdullahi.

Impressing the judges with his charisma, engagement with the audience, and use of props, Abdullahi’s presentation focused on how the exploration and exploitation of a ‘combination therapy’ approach to drug discovery could help to effectively combat fungal infections, which are the common comorbidities in immune-compromised individuals, including those living with HIV, cancer, and COVID-19.

Revealing an enigma
His fascination with microbiology started at a young age. “How very tiny, microscopic creatures, invisible to the unaided eye, are able to infect and sometimes kill both healthy and immune-compromised individuals, was an enigma to me as a little boy. My desire to unravel this mystery triggered my interest in microbiology, and the more I learn, the more enthusiastic I become to broaden my horizon in this challenging yet exciting field of study,” he says.

Abdullahi would like to one day make a difference by conducting relevant research aimed at contributing to finding lasting solutions to the lingering menace posed by pathogenic microbes. “Moreover, I am very passionate about facilitating the transfer of scientific knowledge to the next generation,” Abdullahi concludes.

News Archive

Is milk really so well-known, asks UFS’s Prof. Osthoff
2011-03-17

Prof. Garry Osthoff
Photo: Stephen Collett

Prof. Garry Osthoff opened a whole new world of milk to the audience in his inaugural lecture, Milk: the well-known (?) food, in our Department of Microbial, Biochemical and Food Biotechnology of the Faculty of Natural and Agricultural Sciences.

Prof. Osthoff has done his research in protein chemistry, immuno-chemistry and enzymology at the Council for Scientific and Industrial Research (CSIR) in Pretoria and post-doctoral research at the Bowman-Grey School of Medicine, North Carolina, USA. That was instrumental in establishing food chemistry at the university.
 
He is involved in chemical aspects of food, with a focus on dairy science and technology. He is also involved in the research of cheese processing as well as milk evolution and concentrated on milk evolution in his lecture. Knowledge of milk from dairy animals alone does not provide all the explanations of milk as food.
 
Some aspects he highlighted in his lecture were that milk is the first food to be utilised by young mammals and that it is custom-designed for each species. “However, mankind is an opportunist and has found ways of easy access to food by the practice of agriculture, where plants as well as animals were employed or rather exploited,” he said.
 
The cow is the best-known milk producer, but environmental conditions forced man to select other animals. In spite of breeding selection, cattle seem not to have adapted to the most extreme conditions such as high altitudes with sub-freezing temperatures, deserts and marshes.
 
Prof. Osthoff said the consumption of the milk as an adult is not natural; neither is the consumption of milk across species. This practice of mankind may often have consequences, when signs of malnutrition or diseases are noticed. Two common problems are an allergy to milk and lactose intolerance.
 
Allergies are normally the result of an immune response of the consumer to the foreign proteins found in the milk. In some cases it might help to switch from one milk source to another, such as switching from cow’s milk to goat’s milk.
 
Prof. Osthoff said lactose intolerance – the inability of adult humans to digest lactose, the milk sugar – is natural, as adults lose that ability to digest lactose. The symptoms of the condition are stomach cramps and diarrhoea. This problem is mainly found in the warmer climates of the world. This could be an indication of early passive development of dairy technology. In these regions milk could not be stored in its fresh form, but in a fermented form, in which case the lactose was pre-digested by micro-organisms, and the human population never adapted to digesting lactose in adulthood.
 
According to Prof. Osthoff, it is basically the lactose in milk that has spurred dairy technology. Its fermentation has resulted in the development of yoghurts and all the cheeses that we know. In turn, the intolerance to lactose has spurred a further technological solution: lactose-free milk is currently produced by pre-digestion of lactose with enzymes.
 
It was realised that the milks and products from different species differed in quality aspects such as keeping properties and taste. It was also realised that the nutritional properties differed as well as their effects on health. One example is the mentioned allergy against cow’s milk proteins, which may be solved by the consumption of goat’s milk. The nutritional benefits and technological processing of milk aroused an interest in more information, and it was realised that the information gained from human milk and that of the few domesticated species do not provide a complete explanation of the properties of milk as food. Of the 250 species of milk which have been studied, only the milk of humans and a few domesticated dairy animals has been studied in detail.

Media Release
15 March 2011
Issued by: Lacea Loader
Director: Strategic Communication
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: news@ufs.ac.za

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept