Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 March 2021 | Story Leonie Bolleurs
Famelab
Abdullahi Jamiu, who is working on his master's degree in Microbiology, was adjudicated as the FameLab winner at the Central Regional Heat and will represent the region at the national semi-finals.

Abdullahi Jamiu, who is working on his master's degree in Microbiology in the Department of Microbiology and Biochemistry at the University of the Free State (UFS), was recently announced as the FameLab winner at the Central Regional Heat and will represent the region at the national semi-finals.

Abdullahi, who plans on pursuing a doctoral degree after his master’s, says he wants to establish himself as an academic in microbiology.

Making science simple
He says he decided to participate in the FameLab competition because he is very passionate about communicating science. “Science communication affords me the opportunity to not only take my research outside of the lab space, but also to communicate it to the lay audience. Moreover, science is often perceived by the general public as difficult and unfathomable. As such, science communication programmes promote the simplification and better understanding of scientific knowledge in the community,” he says.

FameLab is coordinated by the South African Agency for Science and Technology Advancement, the British Council, and Jive Media Africa.

According to Abdullahi, the experience was mind-blowing. “It gave me the opportunity to compress my 200-page master's thesis into a three-minute talk in a way I had never thought was possible. Having to present virtually and adjust to the ‘new normal’ was quite challenging,” he adds.

“The overall experience was enlightening and engaging, and at the same time entertaining,” says Abdullahi.

Impressing the judges with his charisma, engagement with the audience, and use of props, Abdullahi’s presentation focused on how the exploration and exploitation of a ‘combination therapy’ approach to drug discovery could help to effectively combat fungal infections, which are the common comorbidities in immune-compromised individuals, including those living with HIV, cancer, and COVID-19.

Revealing an enigma
His fascination with microbiology started at a young age. “How very tiny, microscopic creatures, invisible to the unaided eye, are able to infect and sometimes kill both healthy and immune-compromised individuals, was an enigma to me as a little boy. My desire to unravel this mystery triggered my interest in microbiology, and the more I learn, the more enthusiastic I become to broaden my horizon in this challenging yet exciting field of study,” he says.

Abdullahi would like to one day make a difference by conducting relevant research aimed at contributing to finding lasting solutions to the lingering menace posed by pathogenic microbes. “Moreover, I am very passionate about facilitating the transfer of scientific knowledge to the next generation,” Abdullahi concludes.

News Archive

Plant scientist, Prof Zakkie Pretorius, contributes to food security with his research
2014-08-26

 
Many plant pathologists spend entire careers trying to outwit microbes, in particular those that cause diseases of economically important plants. In some cases control measures are simple and successful. In others, disease management remains an ongoing battle. 

Prof Zakkie Pretorius, Professor in the Department of Plant Sciences, works on a group of wheat diseases known as rusts. The name is derived from the powdery and brown appearance of these fungi.

Over the course of history wheat rusts have undergone what are notoriously known as boom and bust cycles. During boom periods the disease is controlled by means of heritable resistance in a variety, resulting in good yields. This resistance, though, is more often than not busted by the appearance of new rust strains with novel parasitic abilities. For resistance to remain durable, complex combinations of effective genes and chromosome regions have to be added in a single wheat variety.

In recent years, Prof Pretorius has focused on identifying and characterising resistance sources that have the potential to endure the onslaught of new rust races. His group has made great progress in the control of stripe rust – where several chromosome regions conditioning effective resistance have been identified.

Dr Renée Prins of CenGen and an affiliated UFS staff member, developed molecular markers for these resistance sources. These are now routinely applied in wheat breeding programmes in South Africa. In addition, Prof Pretorius collaborates with several countries to transfer newly discovered stem rust resistance genes to wheat, and in characterising effective sources of resistance in existing wheat collections.

His work is closely supported by research conducted by UFS colleagues, students and other partners on the genetics of the various wheat rust pathogens. These studies aim to answer questions about:
• the origin and relatedness of rust races,
• their highly successful parasitic ability, and
• their adaptation in different environments.

The UFS wheat rust programme adds significantly to the development of resistant varieties and thus more sustainable production of this important crop. 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept